LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Crystal Structures Define Mode of Action of Bacteriophage Endolysins

By LabMedica International staff writers
Posted on 13 Aug 2014
Image: Electron microscopy image of the bacteriophages investigated (Photo courtesy of the European Molecular Biology Laboratory).
Image: Electron microscopy image of the bacteriophages investigated (Photo courtesy of the European Molecular Biology Laboratory).
Image: The analyzed endolysins are activated by switching from a tensed, stretched state (left) to a relaxed state (right) (Photo courtesy of the European Molecular Biology Laboratory).
Image: The analyzed endolysins are activated by switching from a tensed, stretched state (left) to a relaxed state (right) (Photo courtesy of the European Molecular Biology Laboratory).
New antibacterial agents based on bacteriophages or their endolysin enzymes have been proposed to solve the problem of the bacterium Clostridium difficile, which is becoming a serious health hazard in hospitals and healthcare institutes, due to its resistance to antibiotics.

Investigators at the European Molecular Biology Laboratory (Hamburg, Germany) based their research primarily on the bacteriophage CD27, which is capable of lysing C. difficile. In addition, they worked with a recombinant form of the CD27L endolysin, which lyses C. difficile in vitro.

To better understand how the lysis process works, the investigators determined the three-dimensional structures of the CD27L endolysin and the CTP1L endolysin from the closely related bacteriophage CPT1 that targets C. tyrobutyricum. For this task they employed X-ray crystallography and small angle X-ray scattering (SAXS), which was done at the Deutsches Elektronen-Synchrotron (DESY).

Results published in the July 24, 2014, online edition of the journal PLOS Pathogens revealed that the two endolysins shared a common activation mechanism, despite having been taken from different species of Clostridium. The activation mechanism depended on a structure where an extended dimer existed in the inactive state but switched to a side-by-side "relaxed" morphology in the active state, which triggered the cleavage of the C-terminal domain. This change of morphology led to the release of the catalytic portion of the endolysin, enabling the efficient digestion of the bacterial cell wall.

“These enzymes appear to switch from a tense, elongated shape, where a pair of endolysins is joined together, to a relaxed state where the two endolysins lie side-by-side,” said first author Dr. Matthew Dunne, a researcher at the European Molecular Biology Laboratory. “The switch from one conformation to the other releases the active enzyme, which then begins to degrade the cell wall.”

Related Links:

European Molecular Biology Laboratory


Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Automatic Hematology Analyzer
DH-800 Series

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more