Stem Cell Advance May Enhance the Process of Tissue Regeneration
|
By LabMedica International staff writers Posted on 12 Aug 2014 |

Image: Induced pluripotent stem cells—known as iPS cells, and which act very much like embryonic stem cells—are here growing into heart cells (blue) and nerve cells (green) (Photo courtesy of the Gladstone Institutes/Chris Goodfellow).
A new stem-cell discovery might one day lead to a more streamlined way to obtain stem cells, which then could be used in the development of replacement tissue for declining body parts.
The research builds on a strategy exploited by scientists from the University of California, San Francisco (UCSF; USA) that involves reprogramming adult cells back to an embryonic state in which they again have the potential to become any type of cell. They reported their findings July 17, 2014, issue of the journal Cell.
The efficiency of this process may soon increase due to the scientists’ identification of biochemical pathways that can suppress the necessary reprogramming of gene activity in adult human cells. Taking away these hurdles was shown to increase the efficiency of stem-cell production.
“Our new work has important implications for both regenerative medicine and cancer research,” said Miguel Ramalho-Santos, PhD, an associate professor of obstetrics, gynecology and reproductive sciences and a member of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, who led the research, funded in part by a NIH Director’s New Innovator Award.
The earlier discovery that it was possible to take specialized adult cells and reverse the developmental clock to strip the mature cells of their distinguishing identities and characteristics, and to make them immortal, reprogrammable cells that theoretically can be used to substitute for any tissue type, led to a share of the Nobel Prize in Physiology or Medicine being awarded to UCSF, Gladstone Institutes and Kyoto University (Japan) researcher Shinya Yamanaka, MD, in 2012.
These induced pluripotent stem (iPS) cells are regarded as an alternative research strategy to ongoing efforts to develop tissue from stem cells obtained from early-stage human embryos. However, in spite of the potential of iPS cells and the enthusiasm surrounding iPS research, the percentage of adult cells effectively transformed to iPS cells is typically low, and the resulting cells often retain indications of their earlier lives as specialized cells.
Researchers generate stem cells by forcing the activation within adult cells of pluripotency-inducing genes, beginning with the so-called “Yamanaka factors,” a process that turns back the clock on cellular maturation. However, as Dr. Ramalho-Santos noted, “from the time of the discovery of iPS cells, it was appreciated that the specialized cells from which they are derived are not a blank slate. They express their own genes that may resist or counter reprogramming.”
But as to what precisely was getting in the way of reprogramming remained little understood. “Now, by genetically removing multiple barriers to reprogramming, we have found that the efficiency of generation of iPS cells can be greatly increased,” Dr. Ramalho-Santos said. The discovery, he reported, will contribute to accelerating the safe and effective use of iPS cells and other reprogrammed cells.
The researchers found not only isolated genes acting as barriers, but rather sets of genes acting together through different mechanisms to create roadblocks to reprogramming. “At practically every level of a cell’s functions there are genes that act in an intricately coordinated fashion to antagonize reprogramming,” Dr. Ramalho-Santos said.
These processes are likely to help adult cells maintain their characteristics and functional roles. “Much like the Red Queen running constantly to remain in the same place in Lewis Carroll’s ‘Through the Looking-Glass,’ adult cells appear to put a lot of effort into remaining in the same state,” he said.
To uncover this earlier unidentified busy biochemical environment of inhibitory gene activity, the scientists had to simultaneously master a few different technical coups in the lab. They combined advanced cellular, genetic, and bioinformatics technologies to comprehensively identify genes that act as barriers to the generation of human iPS cells, and examined how these distinctive barriers work.
Apart from maintaining the stability of adult tissues, the barrier genes most likely serve important roles in other diseases—including in the prevention of various cancers, according to Dr. Ramalho-Santos.
Related Links:
University of California, San Francisco
The research builds on a strategy exploited by scientists from the University of California, San Francisco (UCSF; USA) that involves reprogramming adult cells back to an embryonic state in which they again have the potential to become any type of cell. They reported their findings July 17, 2014, issue of the journal Cell.
The efficiency of this process may soon increase due to the scientists’ identification of biochemical pathways that can suppress the necessary reprogramming of gene activity in adult human cells. Taking away these hurdles was shown to increase the efficiency of stem-cell production.
“Our new work has important implications for both regenerative medicine and cancer research,” said Miguel Ramalho-Santos, PhD, an associate professor of obstetrics, gynecology and reproductive sciences and a member of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, who led the research, funded in part by a NIH Director’s New Innovator Award.
The earlier discovery that it was possible to take specialized adult cells and reverse the developmental clock to strip the mature cells of their distinguishing identities and characteristics, and to make them immortal, reprogrammable cells that theoretically can be used to substitute for any tissue type, led to a share of the Nobel Prize in Physiology or Medicine being awarded to UCSF, Gladstone Institutes and Kyoto University (Japan) researcher Shinya Yamanaka, MD, in 2012.
These induced pluripotent stem (iPS) cells are regarded as an alternative research strategy to ongoing efforts to develop tissue from stem cells obtained from early-stage human embryos. However, in spite of the potential of iPS cells and the enthusiasm surrounding iPS research, the percentage of adult cells effectively transformed to iPS cells is typically low, and the resulting cells often retain indications of their earlier lives as specialized cells.
Researchers generate stem cells by forcing the activation within adult cells of pluripotency-inducing genes, beginning with the so-called “Yamanaka factors,” a process that turns back the clock on cellular maturation. However, as Dr. Ramalho-Santos noted, “from the time of the discovery of iPS cells, it was appreciated that the specialized cells from which they are derived are not a blank slate. They express their own genes that may resist or counter reprogramming.”
But as to what precisely was getting in the way of reprogramming remained little understood. “Now, by genetically removing multiple barriers to reprogramming, we have found that the efficiency of generation of iPS cells can be greatly increased,” Dr. Ramalho-Santos said. The discovery, he reported, will contribute to accelerating the safe and effective use of iPS cells and other reprogrammed cells.
The researchers found not only isolated genes acting as barriers, but rather sets of genes acting together through different mechanisms to create roadblocks to reprogramming. “At practically every level of a cell’s functions there are genes that act in an intricately coordinated fashion to antagonize reprogramming,” Dr. Ramalho-Santos said.
These processes are likely to help adult cells maintain their characteristics and functional roles. “Much like the Red Queen running constantly to remain in the same place in Lewis Carroll’s ‘Through the Looking-Glass,’ adult cells appear to put a lot of effort into remaining in the same state,” he said.
To uncover this earlier unidentified busy biochemical environment of inhibitory gene activity, the scientists had to simultaneously master a few different technical coups in the lab. They combined advanced cellular, genetic, and bioinformatics technologies to comprehensively identify genes that act as barriers to the generation of human iPS cells, and examined how these distinctive barriers work.
Apart from maintaining the stability of adult tissues, the barrier genes most likely serve important roles in other diseases—including in the prevention of various cancers, according to Dr. Ramalho-Santos.
Related Links:
University of California, San Francisco
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







