Tool Library Application Helps Neuroscientists Interpret Big Data
|
By LabMedica International staff writers Posted on 06 Aug 2014 |

Image: Techniques known as dimensionality reduction can help find patterns in the recorded activity of thousands of neurons. Instead of look at all responses at once, these methods find a smaller set of dimensions, in this case, three, that capture as much structure in the data as possible. Each trace in these graphics represents the activity of the whole brain during a single presentation of a moving stimulus, and different versions of the analysis capture structure related either to the passage of time (left) or the direction of the motion (right). The raw data are the same in both cases, but the analyses found different patterns (Photo courtesy of Jeremy Freeman, Nikita Vladimirov, Takashi Kawashima, Yu Mu, Nicholas).
New technologies for tracking brain activity are generating extraordinary quantities of information. This data may contain new clues into how the brain works, but only if researchers can interpret it. To help make sense of the data, neuroscientists can now exploit the power of distributed computing with Thunder, a library of tools.
In an age of “big data,” a single computer cannot always find the solution that a user requires. Instead, computational tasks must be distributed across a collection of computers that analyze a massive data set together. It is how Facebook and Google extract an individuals’ web history to present them with targeted ads, and how Amazon and Netflix recommend a favorite book or movie; however, big data is about more than only marketing.
Thunder was developed at the Howard Hughes Medical Institute’s (HHMI) Janelia Research Campus (Ashburn, VA, USA) and the application speeds the analysis of data sets that are so enormous and complex they would take days or weeks to analyze on a single workstation—if a single workstation could do it at all. Janelia group leaders Drs. Jeremy Freeman, Misha Ahrens, and other colleagues at Janelia and the University of California, Berkeley (USA), reported in the July 27, 2014, issue of the journal Nature Methods that they have used Thunder to quickly find patterns in high-resolution images collected from the brains of active zebrafish and mice with multiple imaging techniques.
Significantly, they have employed Thunder to analyze imaging data from a new microscope that Ahrens and colleagues developed to monitor the activity of nearly every individual cell in the brain of a zebrafish as it behaves in response to visual stimuli. That technology is described in a companion paper published in the same issue of Nature Methods.
Thunder can run on a private cluster or on Amazon’s cloud computing services. Researchers can find everything they need to begin using the open source library of tools online.
New microscopes are capturing images of the brain faster, with better spatial resolution, and across wider regions of the brain than ever before. However, all these aspects come encrypted in gigabytes or even terabytes of data. On a single workstation, simple calculations can take hours. “For a lot of these data sets, a single machine is just not going to cut it,” Dr. Freeman noted.
It is not just the sheer volume of data that exceeds the limits of a single computer, the investigators noted, but also its complexity. “When you record information from the brain, you don’t know the best way to get the information that you need out of it. Every data set is different. You have ideas, but whether or not they generate insights is an open question until you actually apply them,” said Dr. Ahrens.
Distributed computing can accelerate analysis while exploring the full richness of a data set, but many alternatives are available. Dr. Freeman decided to build on a new platform called Spark. Developed at the University of California, Berkeley’s AMPLab, Spark is rapidly becoming a favored tool for large-scale computing across industry. Spark’s capabilities for data caching eliminates the logjam of loading a complete data set for all but the first step, making it well-suited for interactive, exploratory analysis, and for complex algorithms requiring repeated operations on the same data. Furthermore, Spark’s well-designed and versatile application programming interfaces (APIs) help simplify development. Thunder uses the Python API, which Dr. Freeman hopes will make it particularly easy for others to adopt, given Python’s increasing use in neuroscience and data science.
To make Spark suitable for analyzing a broad range of neuroscience data, Dr. Freeman first developed standardized representations of data that were amenable to distributed computing. He then worked to express typical neuroscience workflows into the computational language of Spark. From there, the biologic questions that he and his colleagues were curious about drove development.
Using the application, the investigators analyzed images of the brain in minutes, interacting with and revising analyses without the lengthy delays associated with previous methods. In images taken of a mouse brain with a two-photon microscope, for example, the researchers found cells in the brain whose activity varied with running speed. For analyzing much larger data sets, tools such as Thunder are not just helpful, they are vital, according to the scientists. This is true for the information gathered by the new microscope that the investigators developed for tracking whole-brain activity in response to visual stimuli.
In 2013, Drs. Ahrens and Janelia group leader Dr. Phillip Keller used high-speed light-sheet imaging to engineer a microscope that captures neuronal activity cell by cell across nearly the entire brain of an immature zebrafish. That microscope produced amazing images of neurons in the zebrafish brain firing while the fish was inactive. However, Dr. Ahrens wanted to use the technology to study the brain’s activity in more complex situations. Now, the scientists have combined their original technology with a virtual-reality swim simulator that Dr. Ahrens previously developed to provide fish with visual feedback that simulates movement.
Combining these two technologies lets Dr. Ahrens monitor activity throughout the brain as a fish modifies its behavior based on the sensory data it receives. The technique generates approximately a terabyte of data per hour--presenting a data analysis challenge that helped motivate the development of Thunder. When Drs. Freeman and Ahrens applied their new tools to the data, patterns quickly emerged. As examples, they identified cells whose activity was tied to movement in particular directions and cells that fired specifically when the fish was at rest, and were able to characterize the dynamics of those cells’ activities. Example analyses such as these, and example data sets, are available online (please see Related Links below).
Dr. Ahrens now plans to investigate more complex questions using the new technology, and both he and Dr. Freeman foresee expansion of Thunder. “At every level, this is really just the beginning,” Dr. Freeman stated.
Related Links:
Howard Hughes Medical Institute’s Janelia Research Campus
Example analyses and example data sets
Thunder Tool Library
In an age of “big data,” a single computer cannot always find the solution that a user requires. Instead, computational tasks must be distributed across a collection of computers that analyze a massive data set together. It is how Facebook and Google extract an individuals’ web history to present them with targeted ads, and how Amazon and Netflix recommend a favorite book or movie; however, big data is about more than only marketing.
Thunder was developed at the Howard Hughes Medical Institute’s (HHMI) Janelia Research Campus (Ashburn, VA, USA) and the application speeds the analysis of data sets that are so enormous and complex they would take days or weeks to analyze on a single workstation—if a single workstation could do it at all. Janelia group leaders Drs. Jeremy Freeman, Misha Ahrens, and other colleagues at Janelia and the University of California, Berkeley (USA), reported in the July 27, 2014, issue of the journal Nature Methods that they have used Thunder to quickly find patterns in high-resolution images collected from the brains of active zebrafish and mice with multiple imaging techniques.
Significantly, they have employed Thunder to analyze imaging data from a new microscope that Ahrens and colleagues developed to monitor the activity of nearly every individual cell in the brain of a zebrafish as it behaves in response to visual stimuli. That technology is described in a companion paper published in the same issue of Nature Methods.
Thunder can run on a private cluster or on Amazon’s cloud computing services. Researchers can find everything they need to begin using the open source library of tools online.
New microscopes are capturing images of the brain faster, with better spatial resolution, and across wider regions of the brain than ever before. However, all these aspects come encrypted in gigabytes or even terabytes of data. On a single workstation, simple calculations can take hours. “For a lot of these data sets, a single machine is just not going to cut it,” Dr. Freeman noted.
It is not just the sheer volume of data that exceeds the limits of a single computer, the investigators noted, but also its complexity. “When you record information from the brain, you don’t know the best way to get the information that you need out of it. Every data set is different. You have ideas, but whether or not they generate insights is an open question until you actually apply them,” said Dr. Ahrens.
Distributed computing can accelerate analysis while exploring the full richness of a data set, but many alternatives are available. Dr. Freeman decided to build on a new platform called Spark. Developed at the University of California, Berkeley’s AMPLab, Spark is rapidly becoming a favored tool for large-scale computing across industry. Spark’s capabilities for data caching eliminates the logjam of loading a complete data set for all but the first step, making it well-suited for interactive, exploratory analysis, and for complex algorithms requiring repeated operations on the same data. Furthermore, Spark’s well-designed and versatile application programming interfaces (APIs) help simplify development. Thunder uses the Python API, which Dr. Freeman hopes will make it particularly easy for others to adopt, given Python’s increasing use in neuroscience and data science.
To make Spark suitable for analyzing a broad range of neuroscience data, Dr. Freeman first developed standardized representations of data that were amenable to distributed computing. He then worked to express typical neuroscience workflows into the computational language of Spark. From there, the biologic questions that he and his colleagues were curious about drove development.
Using the application, the investigators analyzed images of the brain in minutes, interacting with and revising analyses without the lengthy delays associated with previous methods. In images taken of a mouse brain with a two-photon microscope, for example, the researchers found cells in the brain whose activity varied with running speed. For analyzing much larger data sets, tools such as Thunder are not just helpful, they are vital, according to the scientists. This is true for the information gathered by the new microscope that the investigators developed for tracking whole-brain activity in response to visual stimuli.
In 2013, Drs. Ahrens and Janelia group leader Dr. Phillip Keller used high-speed light-sheet imaging to engineer a microscope that captures neuronal activity cell by cell across nearly the entire brain of an immature zebrafish. That microscope produced amazing images of neurons in the zebrafish brain firing while the fish was inactive. However, Dr. Ahrens wanted to use the technology to study the brain’s activity in more complex situations. Now, the scientists have combined their original technology with a virtual-reality swim simulator that Dr. Ahrens previously developed to provide fish with visual feedback that simulates movement.
Combining these two technologies lets Dr. Ahrens monitor activity throughout the brain as a fish modifies its behavior based on the sensory data it receives. The technique generates approximately a terabyte of data per hour--presenting a data analysis challenge that helped motivate the development of Thunder. When Drs. Freeman and Ahrens applied their new tools to the data, patterns quickly emerged. As examples, they identified cells whose activity was tied to movement in particular directions and cells that fired specifically when the fish was at rest, and were able to characterize the dynamics of those cells’ activities. Example analyses such as these, and example data sets, are available online (please see Related Links below).
Dr. Ahrens now plans to investigate more complex questions using the new technology, and both he and Dr. Freeman foresee expansion of Thunder. “At every level, this is really just the beginning,” Dr. Freeman stated.
Related Links:
Howard Hughes Medical Institute’s Janelia Research Campus
Example analyses and example data sets
Thunder Tool Library
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







