New Drug Shown to Be Effective Against Malaria Using Synchrotron Light
|
By LabMedica International staff writers Posted on 04 Aug 2014 |

Image: In this image, the drug CD27 completely covers the minor groove of the DNA complex (Photo courtesy of the Universitat Politècnica de Catalunya).
Spanish and Scottish investigators have shown that a new drug is an effective option in the battle against malaria.
An international group of researchers led by Dr. Lourdes Campos from the department of chemical engineering at the Universitat Politècnica de Catalunya•BarcelonaTech (UPC; Spain) has proven that the CD27 drug can be an effective option against malaria. Researchers came to this conclusion after studying the three-dimensional (3D) crystalline structure of the complex of DNA with the drug.
The CD27 drug is a complex synthesized by researchers led by Dr. Christophe Dardonville at the Instituto de Química Médica of the Spanish National Research Council’s/(IQM-CSIC) in Madrid. “CD27 is chemically related to diamidines--molecules with two amidines--and has previously been used with success in other Trypanosoma species that produce the ‘sleeping sickness’ in Africa and Chagas disease in South America,” said Dr. Campos.
The findings show how the CD27 drug completely covers the minor groove of the DNA, preventing the typical development of the parasite and causing its destruction. This research helps to better understand this range of compounds and may substantially contribute to the development of new, more effective drugs against malaria.
Once the samples of the drug were validated by Harry P. De Koning, a researcher at the University of Glasgow (Scotland, UK), they were sent to the UPC research group in crystallography, structure, and function of biologic macromolecules (MACROM), led by Dr. Campos. For over one year, the group has been working to obtain the crystalline structure of DNA.
Obtaining a DNA crystal is a multiparametric process and requires different variables; furthermore, before obtaining a DNA crystal with the drug, several tests under different conditions are required. The crystal must present a very high molecule order in the crystalline network, as this is crucial for determining the tridimensional structure of the complex. “Obtaining a good crystal is a long and hard task and requires the collaboration of groups from different disciplines. With the help of synchrotrons like the ALBA, science can make a big step forward in comparison with the methods that were available 20 years ago,” said Dr. Campos.
In the next phase, researchers studied the crystals of the complex of DNA with the drug using x-rays at the XALOC macromolecular diffraction beamline of the ALBA synchrotron (www.cells.es), located in Cerdanyola del Vallès, Spain. X-rays, when they pass through the crystal and diffract, project images of spots which, after mathematic analysis, can solve the tridimensional structure of a molecule. When MACROM researchers solved the 3D structure, they identified the details of CD27’s structure, enabling the drug to recognize the regions of DNA covering the minor groove and preventing the development of the parasite. At the same time, these studies contribute to a rational design of new drugs, bearing in mind the molecular interactions caused by CD27.
The research findings have been confirmed and deposited at the Protein Data Bank, a 3D database of proteins and nucleic acids, and published June 2014 in the journal Acta Crystallographica D. The drug is patent-free and can be produced by any pharmaceutical company interested in its development.
ALBA is the Spanish synchrotron light source. ALBA, meaning “Sunrise” in Catalan and in Spanish, is a synchrotron radiation facility. It is a complex of electron accelerators that produce synchrotron light, which allows the atomic structure of matter to be visualized and its properties to be studied. ALBA has been in operation since May 2012 and has seven experimental beamlines. This scientific infrastructure produces 5,000 hours of beamtime per year and is available for academics and the industrial sector and serves more than 1,000 researchers every year.
Related Links:
Universitat Politècnica de Catalunya•BarcelonaTech
University of Glasgow
ALBA synchrotron
An international group of researchers led by Dr. Lourdes Campos from the department of chemical engineering at the Universitat Politècnica de Catalunya•BarcelonaTech (UPC; Spain) has proven that the CD27 drug can be an effective option against malaria. Researchers came to this conclusion after studying the three-dimensional (3D) crystalline structure of the complex of DNA with the drug.
The CD27 drug is a complex synthesized by researchers led by Dr. Christophe Dardonville at the Instituto de Química Médica of the Spanish National Research Council’s/(IQM-CSIC) in Madrid. “CD27 is chemically related to diamidines--molecules with two amidines--and has previously been used with success in other Trypanosoma species that produce the ‘sleeping sickness’ in Africa and Chagas disease in South America,” said Dr. Campos.
The findings show how the CD27 drug completely covers the minor groove of the DNA, preventing the typical development of the parasite and causing its destruction. This research helps to better understand this range of compounds and may substantially contribute to the development of new, more effective drugs against malaria.
Once the samples of the drug were validated by Harry P. De Koning, a researcher at the University of Glasgow (Scotland, UK), they were sent to the UPC research group in crystallography, structure, and function of biologic macromolecules (MACROM), led by Dr. Campos. For over one year, the group has been working to obtain the crystalline structure of DNA.
Obtaining a DNA crystal is a multiparametric process and requires different variables; furthermore, before obtaining a DNA crystal with the drug, several tests under different conditions are required. The crystal must present a very high molecule order in the crystalline network, as this is crucial for determining the tridimensional structure of the complex. “Obtaining a good crystal is a long and hard task and requires the collaboration of groups from different disciplines. With the help of synchrotrons like the ALBA, science can make a big step forward in comparison with the methods that were available 20 years ago,” said Dr. Campos.
In the next phase, researchers studied the crystals of the complex of DNA with the drug using x-rays at the XALOC macromolecular diffraction beamline of the ALBA synchrotron (www.cells.es), located in Cerdanyola del Vallès, Spain. X-rays, when they pass through the crystal and diffract, project images of spots which, after mathematic analysis, can solve the tridimensional structure of a molecule. When MACROM researchers solved the 3D structure, they identified the details of CD27’s structure, enabling the drug to recognize the regions of DNA covering the minor groove and preventing the development of the parasite. At the same time, these studies contribute to a rational design of new drugs, bearing in mind the molecular interactions caused by CD27.
The research findings have been confirmed and deposited at the Protein Data Bank, a 3D database of proteins and nucleic acids, and published June 2014 in the journal Acta Crystallographica D. The drug is patent-free and can be produced by any pharmaceutical company interested in its development.
ALBA is the Spanish synchrotron light source. ALBA, meaning “Sunrise” in Catalan and in Spanish, is a synchrotron radiation facility. It is a complex of electron accelerators that produce synchrotron light, which allows the atomic structure of matter to be visualized and its properties to be studied. ALBA has been in operation since May 2012 and has seven experimental beamlines. This scientific infrastructure produces 5,000 hours of beamtime per year and is available for academics and the industrial sector and serves more than 1,000 researchers every year.
Related Links:
Universitat Politècnica de Catalunya•BarcelonaTech
University of Glasgow
ALBA synchrotron
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







