LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Research Lab to Develop World’s First Neural Device to Restore Memory

By LabMedica International staff writers
Posted on 04 Aug 2014
Image: Lawrence Livermore National Laboratory (LLNL) will develop an implantable neural device with the ability to record and stimulate neurons within the brain to help restore memory (Photo courtesy of DOE/Lawrence Livermore National Laboratory).
Image: Lawrence Livermore National Laboratory (LLNL) will develop an implantable neural device with the ability to record and stimulate neurons within the brain to help restore memory (Photo courtesy of DOE/Lawrence Livermore National Laboratory).
A USD 2.5 million grant has been awarded to a US research lab to develop an implantable neural device with the ability to record and stimulate neurons within the brain to help restore memory.

The US Department of Defense’s Defense Advanced Research Projects Agency (DARPA) awarded the grant to Lawrence Livermore National Laboratory (LLNL; Livermore, CA, USA). The research builds on the knowledge that memory is a process in which neurons in specific regions of the brain encode information, store it, and retrieve it. Specific types of disorders and injuries, including traumatic brain injury (TBI), Alzheimer’s disease, and epilepsy, disrupt this process and cause memory loss. TBI, specifically, has affected 270,000 military service members since 2000.

The objective of LLNL’s research initiated by LLNL’s Neural Technology group and undertaken in collaboration with the University of California, Los Angeles (UCLA; USA) and Medtronic (Minneapolis, MN, USA) is to develop a device that uses real-time recording and closed-loop stimulation of neural tissues to bridge gaps in the injured brain and restore individuals’ ability to form new memories and access previously formed ones.

The research is funded by DARPA’s Restoring Active Memory (RAM) program. Specifically, the neural technology group are trying to develop a neuromodulation system, an advanced electronics system to modulate neurons, which will investigate areas of the brain associated with memory to understand how new memories are formed. The device will be developed at LLNL’s Center for Bioengineering.

“Currently, there is no effective treatment for memory loss resulting from conditions like TBI,” said LLNL’s project leader Dr. Satinderpall Pannu, director of the LLNL’s Center for Bioengineering, a unique facility dedicated to fabricating biocompatible neural interfaces. “This is a tremendous opportunity from DARPA to leverage Lawrence Livermore’s advanced capabilities to develop cutting-edge medical devices that will change the health care landscape.”

LLNL engineers will devise a miniature, wireless and chronically implantable neural device that will incorporate both single neuron and local field potential recordings into a closed-loop system to implant into TBI patients’ brains. The device implanted into the entorhinal cortex and hippocampus will allow for stimulation and recording from 64 channels located on two high-density electrode arrays. The entorhinal cortex and hippocampus are brain regions associated with memory.

The arrays will connect to an implantable electronics bundle capable of wireless data and power telemetry. An external electronic system worn around the ear will store digital information associated with memory storage and retrieval and provide power telemetry to the implantable package using a custom radiofrequency (RF) coil system.

The device’s electrodes will be integrated with electronics using advanced LLNL integration and 3D packaging technologies, and are designed to last throughout the duration of treatment. The microelectrodes that are the heart of this device are embedded in a biocompatible, flexible polymer. Using the Center for Bioengineering’s capabilities, Dr. Pannu and his team of engineers have achieved 25 patents and many publications during the last 10 years. The team's goal is to build the new prototype device for clinical testing by 2017.

Lawrence Livermore’s collaborators, UCLA and Medtronic, will focus on conducting clinical trials and creating parts and components, respectively. “The RAM program poses a formidable challenge reaching across multiple disciplines from basic brain research to medicine, computing and engineering,” said Itzhak Fried, lead investigator for the UCLA on this project and professor of neurosurgery and psychiatry and biobehavioral sciences at the David Geffen School of Medicine at UCLA and the Semel Institute for Neuroscience and Human Behavior. “But at the end of the day, it is the suffering individual, whether an injured member of the armed forces or a patient with Alzheimer’s disease, who is at the center of our thoughts and efforts.”

LLNL’s work on the Restoring Active Memory program supports President Obama’s Brain Research through Advancing Innovative Neurotechnologies (BRAIN) initiative. “Our years of experience developing implantable microdevices, through projects funded by the Department of Energy [DOE], prepared us to respond to DARPA’s challenge,” said Lawrence Livermore engineer Kedar Shah, a project leader in the neural technology group.

Related Links:

Lawrence Livermore National Laboratory
University of California, Los Angeles 
Medtronic


New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
ESR Analyzer
TEST1 2.0
8-Channel Pipette
SAPPHIRE 20–300 µL

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more