Precise Ion Irradiation Dosing Method Developed for Cancer Therapy
|
By LabMedica International staff writers Posted on 31 Jul 2014 |
Scientists are employing nuclear physics principles to provide more effective approaches to radiotherapy treatment for cancer patients.
Radiation therapy using heavy ions is best suitable for cancer patients with tumors that are difficult to access, such as in the brain. These particles scarcely damage the penetrated tissue around the tumor, and can be used in such a way that they deliver their maximum energy only directly at their intended target: the tumor.
New research in this comparatively new technology is concentrated on the exact dosing: the investigators must figure out how precisely to set the radiation parameters to destroy the cancerous cells directly with as little damage as possible to the surrounding tissue. The solution depends on the extent to which the ions can be decelerated by body tissue on their way to the tumor.
Scientists from the Physikalisch-Technische Bundesanstalt (PTB; Braunschweig, Germany) have established a strategy for the more precise determination of the deceleration of carbon ions in the tissue in the therapeutically relevant area, which is totally a new approach. Although the measurement data available up to now must still become more exact, the technique has been show to perform well and can, in the future, contribute to improving the dosing for cancer therapy with carbon ions. The first findings of this research have been published June 13, 2014, in the journal Physics in Medicine and Biology.
Human tissue mostly consists of water. It can, therefore, be simulated in liquid water in which form accelerated ions can be blocked on their way and at which target they deliver their maximum energy quantity—at least hypothetically, because up to now research findings have existed only for water vapor. Scientists, however, assume that if the aggregate state is neglected, the data for the determination of the radiation dose become too imprecise.
PTB scientists have now succeeded for the first time in determining the decelerating power of liquid water for carbon ions with kinetic energies in the range of the maximum energy dissipation by experiment. These findings indicate that carbon ions are less strongly blocked in liquid water, per molecule, than in water vapor. As soon as more definitive data become available, the findings will include the calibration of ionization chambers, which are used to determine the dose in therapy planning. Currently, the Heidelberg Ion-Beam Therapy Center (HIT; Germany) is the only institution in Europe that irradiates patients with heavy ions.
The procedure applied by the researchers is based on a method that originates from nuclear physics: the inverted Doppler shift attenuation technique. While the carbon ions excited by a nuclear reaction move through the water volume, they are stopped and fall back into their ground state. The energy distribution of the gamma quanta emitted thereby is recorded with the aid of an ultra-pure germanium detector. The Doppler Effect, which leads to the displacement of the gamma energy, and the exponential-decay principle allow for the development of the velocity of the carbon ions with time to be studied, and therefore, conclusions about the stopping process can be drawn, according to the researchers.
Related Links:
Physikalisch-Technische Bundesanstalt
Heidelberg Ion-Beam Therapy Center
Radiation therapy using heavy ions is best suitable for cancer patients with tumors that are difficult to access, such as in the brain. These particles scarcely damage the penetrated tissue around the tumor, and can be used in such a way that they deliver their maximum energy only directly at their intended target: the tumor.
New research in this comparatively new technology is concentrated on the exact dosing: the investigators must figure out how precisely to set the radiation parameters to destroy the cancerous cells directly with as little damage as possible to the surrounding tissue. The solution depends on the extent to which the ions can be decelerated by body tissue on their way to the tumor.
Scientists from the Physikalisch-Technische Bundesanstalt (PTB; Braunschweig, Germany) have established a strategy for the more precise determination of the deceleration of carbon ions in the tissue in the therapeutically relevant area, which is totally a new approach. Although the measurement data available up to now must still become more exact, the technique has been show to perform well and can, in the future, contribute to improving the dosing for cancer therapy with carbon ions. The first findings of this research have been published June 13, 2014, in the journal Physics in Medicine and Biology.
Human tissue mostly consists of water. It can, therefore, be simulated in liquid water in which form accelerated ions can be blocked on their way and at which target they deliver their maximum energy quantity—at least hypothetically, because up to now research findings have existed only for water vapor. Scientists, however, assume that if the aggregate state is neglected, the data for the determination of the radiation dose become too imprecise.
PTB scientists have now succeeded for the first time in determining the decelerating power of liquid water for carbon ions with kinetic energies in the range of the maximum energy dissipation by experiment. These findings indicate that carbon ions are less strongly blocked in liquid water, per molecule, than in water vapor. As soon as more definitive data become available, the findings will include the calibration of ionization chambers, which are used to determine the dose in therapy planning. Currently, the Heidelberg Ion-Beam Therapy Center (HIT; Germany) is the only institution in Europe that irradiates patients with heavy ions.
The procedure applied by the researchers is based on a method that originates from nuclear physics: the inverted Doppler shift attenuation technique. While the carbon ions excited by a nuclear reaction move through the water volume, they are stopped and fall back into their ground state. The energy distribution of the gamma quanta emitted thereby is recorded with the aid of an ultra-pure germanium detector. The Doppler Effect, which leads to the displacement of the gamma energy, and the exponential-decay principle allow for the development of the velocity of the carbon ions with time to be studied, and therefore, conclusions about the stopping process can be drawn, according to the researchers.
Related Links:
Physikalisch-Technische Bundesanstalt
Heidelberg Ion-Beam Therapy Center
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







