Dose of 100-Year-Old Drug for Sleeping Sickness Reverses Autism-Like Symptoms in Lab Mice
|
By LabMedica International staff writers Posted on 23 Jun 2014 |

Image: Transmission electron micrograph of a cell mitochondrion (Photo courtesy of Thomas Deerinck, NCMIR, UC San Diego).
By exploring a unique hypothesis that suggests autism is a result of faulty cell communication, researchers revealed that a nearly 100-year-old drug approved for treating sleeping sickness has been found to restore normal cellular signaling in a mouse model of autism, reversing symptoms of the neurologic disorder in animals that were the human biologic age equivalent of 30 years old.
The findings, published in the June 17, 2014, online issue of the journal Translational Psychiatry, follow up on similar research published last year by senior author Robert K. Naviaux, MD, PhD, professor of medicine, pediatrics and pathology, and colleagues at University of California (UC), San Diego School of Medicine (USA).
Dr. Naviaux reported that the findings fit well with the theory that autism is caused by an array of interconnected factors, “Twenty percent of the known factors associated with autism are genetic, but most are not. It’s wrong to think of genes and the environment as separate and independent factors. Genes and environmental factors interact. The net result of this interaction is metabolism.”
Dr. Naviaux, who is co-director of the Mitochondrial and Metabolic Disease Center at UC San Diego, said one of the universal symptoms of autism is metabolic disturbances. “Cells have a halo of metabolites and nucleotides surrounding them. These create a sort of chemical glow that broadcasts the state of health of the cell.”
Cells endangered or injured by microbes, such as viruses or bacteria, or by physical forces or by chemicals, such as pollutants, react defensively, a part of the normal immune response, according to Dr. Naviaux. Their membranes harden. Internal metabolic processes are altered, most notably in mitochondria, and communications between cells are dramatically reduced. This is the "cell danger response,” said Dr. Naviaux, and if it persists, the result can be lasting, diverse impairment. If it occurs during childhood, for example, neurodevelopment is delayed.
“Cells behave like countries at war,” said Dr. Naviaux. “When a threat begins, they harden their borders. They don’t trust their neighbors. But without constant communication with the outside, cells begin to function differently. In the case of neurons, it might be by making fewer or too many connections. One way to look at this related to autism is this: When cells stop talking to each other, children stop talking.”
Dr. Naviaux and colleagues have focused on a cellular signaling system linked to both mitochondrial function and to the cell's innate immune function. Specifically, they have zeroed in on the role of nucleotides like adenosine triphosphate (ATP) and other signaling mitokines—molecules generated by distressed mitochondria. These mitokines have separate metabolic functions outside of the cell where they bind to and regulate receptors present on every cell of the body. Nineteen types of so-called purinergic receptors are known to be stimulated by these extracellular nucleotides, and the receptors are known to control a broad range of biological characteristics with relevance to autism, such as impaired language and social skills.
In their latest work, Dr. Naviaux once more evaluated the effect of suramin, a well-known inhibitor of purinergic signaling that was first synthesized in 1916 and is used to treat trypanosomiasis or African sleeping sickness, a parasitic disease. They discovered that suramin inhibited the extracellular signaling pathway used by ATP and other mitokines in a mouse model of autism spectrum disorder (ASD), ending the cell danger response and resulting inflammation. Cells then began to behave normally and autism-like behaviors and metabolism in the mice were corrected.
However, the biologic and behavioral benefits of suramin were not permanent, nor preventive. A single dose remained effective in the mice for approximately five weeks, and then cleared out. Moreover, suramin cannot be taken long-term since it can result in anemia and adrenal gland dysfunction.
Nevertheless, Dr. Naviaux emphasized that these and earlier findings are encouraging enough to soon initiate a small phase 1 clinical trial with children who have ASD. He expects the trial to begin later in 2014.
“Obviously correcting abnormalities in a mouse is a long way from a cure in humans, but we think this approach—antipurinergic therapy—is a new and fresh way to think about and address the challenge of autism. Our work doesn’t contradict what others have discovered or done. It's another perspective. Our idea is that this kind of treatment, eliminating a basic, underlying metabolic dysfunction, removes a hurdle that might make other non-drug behavioral and developmental therapies of autism more effective. The discovery that a single dose of medicine can fundamentally reset metabolism for weeks means that newer and safer drugs might not need to be given chronically. Members of this new class of medicines might need to be given only intermittently during sensitive developmental windows to unblock metabolism and permit improved development in response to many kinds of behavioral and occupational therapies, and to natural play,” he concluded
Related Links:
University of California, San Diego School of Medicine
The findings, published in the June 17, 2014, online issue of the journal Translational Psychiatry, follow up on similar research published last year by senior author Robert K. Naviaux, MD, PhD, professor of medicine, pediatrics and pathology, and colleagues at University of California (UC), San Diego School of Medicine (USA).
Dr. Naviaux reported that the findings fit well with the theory that autism is caused by an array of interconnected factors, “Twenty percent of the known factors associated with autism are genetic, but most are not. It’s wrong to think of genes and the environment as separate and independent factors. Genes and environmental factors interact. The net result of this interaction is metabolism.”
Dr. Naviaux, who is co-director of the Mitochondrial and Metabolic Disease Center at UC San Diego, said one of the universal symptoms of autism is metabolic disturbances. “Cells have a halo of metabolites and nucleotides surrounding them. These create a sort of chemical glow that broadcasts the state of health of the cell.”
Cells endangered or injured by microbes, such as viruses or bacteria, or by physical forces or by chemicals, such as pollutants, react defensively, a part of the normal immune response, according to Dr. Naviaux. Their membranes harden. Internal metabolic processes are altered, most notably in mitochondria, and communications between cells are dramatically reduced. This is the "cell danger response,” said Dr. Naviaux, and if it persists, the result can be lasting, diverse impairment. If it occurs during childhood, for example, neurodevelopment is delayed.
“Cells behave like countries at war,” said Dr. Naviaux. “When a threat begins, they harden their borders. They don’t trust their neighbors. But without constant communication with the outside, cells begin to function differently. In the case of neurons, it might be by making fewer or too many connections. One way to look at this related to autism is this: When cells stop talking to each other, children stop talking.”
Dr. Naviaux and colleagues have focused on a cellular signaling system linked to both mitochondrial function and to the cell's innate immune function. Specifically, they have zeroed in on the role of nucleotides like adenosine triphosphate (ATP) and other signaling mitokines—molecules generated by distressed mitochondria. These mitokines have separate metabolic functions outside of the cell where they bind to and regulate receptors present on every cell of the body. Nineteen types of so-called purinergic receptors are known to be stimulated by these extracellular nucleotides, and the receptors are known to control a broad range of biological characteristics with relevance to autism, such as impaired language and social skills.
In their latest work, Dr. Naviaux once more evaluated the effect of suramin, a well-known inhibitor of purinergic signaling that was first synthesized in 1916 and is used to treat trypanosomiasis or African sleeping sickness, a parasitic disease. They discovered that suramin inhibited the extracellular signaling pathway used by ATP and other mitokines in a mouse model of autism spectrum disorder (ASD), ending the cell danger response and resulting inflammation. Cells then began to behave normally and autism-like behaviors and metabolism in the mice were corrected.
However, the biologic and behavioral benefits of suramin were not permanent, nor preventive. A single dose remained effective in the mice for approximately five weeks, and then cleared out. Moreover, suramin cannot be taken long-term since it can result in anemia and adrenal gland dysfunction.
Nevertheless, Dr. Naviaux emphasized that these and earlier findings are encouraging enough to soon initiate a small phase 1 clinical trial with children who have ASD. He expects the trial to begin later in 2014.
“Obviously correcting abnormalities in a mouse is a long way from a cure in humans, but we think this approach—antipurinergic therapy—is a new and fresh way to think about and address the challenge of autism. Our work doesn’t contradict what others have discovered or done. It's another perspective. Our idea is that this kind of treatment, eliminating a basic, underlying metabolic dysfunction, removes a hurdle that might make other non-drug behavioral and developmental therapies of autism more effective. The discovery that a single dose of medicine can fundamentally reset metabolism for weeks means that newer and safer drugs might not need to be given chronically. Members of this new class of medicines might need to be given only intermittently during sensitive developmental windows to unblock metabolism and permit improved development in response to many kinds of behavioral and occupational therapies, and to natural play,” he concluded
Related Links:
University of California, San Diego School of Medicine
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







