LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Genetic Techniques May Lead to New Therapeutic Approaches for Cardiovascular Diseases

By LabMedica International staff writers
Posted on 19 Jun 2014
A review summarized the state-of-the-art in the field of genome-based therapies for cardiovascular diseases.

Despite statistics showing that the death rate from heart disease has fallen about 39% percent over the past 10 years, heart disease remains the number-one cause of death in the United States, killing almost 380,000 people a year. As several recent approaches to treating the wide range of heart diseases have failed for lack of efficacy, the author of the review, Dr. Daniel J. Rader, professor of genetics at the University of Pennsylvania (Philadelphia, USA) has suggested that human genetics-based technologies have the potential to identify new targets for which the likelihood of therapeutic success is considerably greater.

Among the problems he cited in the June 4, 2014, issue of the journal Science Translational Medicine were (1) many biopharmaceutical companies have begun to back away from efforts to discover and develop therapies for this prevalent disease; (2) seven drugs have failed in phase III clinical trials in the last three to five years; and (3) animal models of atherosclerosis have not proven reliable at predicting new therapies that are effective in humans.

Dr. Rader suggested that as with recent successes in cancer immunotherapy, basing drug targets on human genetics may provide greater confidence that a therapeutic targeted to a particular pathway will show clinical benefit in reducing major cardiovascular events in people. In the review he cited studies of common variants associated with cardiovascular diseases that had yielded nearly 50 statistically significantly associated discrete genetic loci genome-wide. Less than a third were associated with such traditional risk factors as LDL-C (low density lipoprotein-cholesterol) levels or blood pressure, leaving more than 30 loci with no association with traditional measureable risk factors.

"Some of the most interesting new targets for atherosclerotic cardiovascular disease are likely to come from genetic studies of common and rare variants, comparing individuals with early disease with those who are free of disease," said Dr. Rader.

Related Links:
University of Pennsylvania


Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic CLIA Analyzer
Shine i9000
Silver Member
PCR Plates
Diamond Shell PCR Plates

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more