DNA Nanotechnology Strategy Puts Enzyme Catalysis Within Reach
|
By LabMedica International staff writers Posted on 10 Jun 2014 |

Image: Remaking an artificial enzyme pair in the test tube and having it work outside the cell is a big challenge for DNA nanotechnology. To meet the challenge, they first made a DNA scaffold that looks like several paper towel rolls glued together. Using a computer program, they were able to customize the chemical building blocks of the DNA sequence so that the scaffold would self-assemble. Next, the two enzymes were attached to the ends of the DNA tubes. In the middle of the DNA scaffold, they affixed a single strand of DNA, with the NAD+ tethered to the end like a ball and string. Yan refers to this as a swinging arm, which is long, flexible and dexterous enough to rock back and forth between the enzymes (Photo courtesy of the Biodesign Institute at ASU).
Using molecules of DNA in an architectural scaffold, scientists have developed a three-dimensional (3D) synthetic enzyme cascade that mimics an important biochemical pathway that could prove important for future biomedical and energy applications. In this latest research, the research team took up the challenge of mimicking enzymes outside the friendly confines of the cell. These enzymes speed up chemical reactions, used, for example, for the digestion of food into sugars and energy during human metabolism.
Arizona State University (ASU; Tempe, USA) scientists, working with colleagues at the University of Michigan (Ann Arbor, USA), have developed the technology for future biomedical and energy applications. The study’s findings were published online May 25, 2014, in the journal Nature Nanotechnology. Led by ASU Prof. Hao Yan, the research team included ASU Biodesign Institute researchers along with colleagues Prof. Nils Walter and postdoctoral fellow Alexander Johnson-Buck at the University of Michigan.
Researchers in the field of DNA nanotechnology, taking advantage of the binding properties of the chemical building blocks of DNA, twist and self-assemble DNA into ever-more imaginative two- and three-dimensional structures for medical, electronic and energy applications.
In the latest cutting-edge approach, the researcher attempted to mimic enzymes outside the friendly boundaries of the cell. These enzymes speed up chemical reactions, used in bodies for the digestion of food into sugars and energy during human metabolism, for example.
“We look to nature for inspiration to build human-made molecular systems that mimic the sophisticated nanoscale machineries developed in living biological systems, and we rationally design molecular nanoscaffolds to achieve biomimicry at the molecular level,” Prof. Yan said, who also directs the Center for Molecular Design and Biomimicry at the Biodesign Institute.
With enzymes, all moving parts must be tightly controlled and coordinated; otherwise the reaction will not work. The moving parts, which include molecules such as substrates and cofactors, all fit into a complex enzyme pocket just like a baseball into a glove. Once all the chemical parts have found their place in the pocket, the energetics that control the reaction become favorable, and swiftly make chemistry happen. Each enzyme releases its product, similar to a baton handed off in a relay race, to another enzyme to carry out the next phase in a biochemical pathway in the human body.
For the new study, the researchers chose a pair of universal enzymes, glucose-6 phosphate dehydrogenase (G6pDH) and malate dehydrogenase (MDH), that are important for biosynthesis—making fats, amino acids, and nucleic acids vital for all life. For instance, flaws found in the pathway are known to cause anemia in humans. “Dehydrogenase enzymes are particularly important since they supply most of the energy of a cell,” said Prof. Walter. “Work with these enzymes could lead to future applications in green energy production such as fuel cells using biomaterials for fuel.”
In the pathway, G6pDH uses the glucose sugar substrate and a cofactor called NAD to peel off hydrogen atoms from glucose and transfer to the next enzyme, MDH, to continue and produce malic acid and generate NADH in the process, which is used for as a key cofactor for biosynthesis.
Re-creating this enzyme pair in the test tube and having it work outside the cell is a big hurdle for DNA nanotechnology. To meet the challenge, they first constructed a DNA scaffold that looks like several paper towel rolls glued together. Using a computer program, they were able to engineer the chemical building blocks of the DNA sequence so that the scaffold would self-assemble. Next, the two enzymes were attached to the ends of the DNA tubes. In the middle of the DNA scaffold, they attached a single strand of DNA, with the NAD+ tethered to the end like a ball and string. Dr. Yan refers to this as a swinging arm, which is long, and flexible enough to rock back and forth between the enzymes.
Once the system was developed in vitro by heating up and cooling the DNA, which leads to self-assembly, the enzyme parts were added in. They confirmed the structure using a high-powered an atomic force microscope (AFM), which can see down to the nanoscale.
Similar to architects, the scientists first built a full-scale model so they could test and measure the spatial geometry and structures, including in their setup a tiny fluorescent dye attached to the swinging arm. If the reaction takes place, they can measure a red beacon signal that the dye gives off—but in this case, unlike a traffic signal, a red light means the reaction works. Next, they tried the enzyme system and found that it worked just the same as a cellular enzyme cascade. They also measured the effect when varying the distance between the swinging arm and the enzymes. They discovered that there was a perfect spot, at 7 nm, where the arm angle was parallel to the enzyme pair.
With a single swinging arm in the in vitro system working just like the cellular enzymes, the researchers added arms, assessing the limits of the system with up to four added arms. They were able to show that as each arm was added, the G6pDH could keep up to make even more product, while the MDH’s limit was two swinging arms. “Lining enzymes up along a designed assembly line like Henry Ford did for auto parts is particularly satisfying for someone living near the motor city Detroit [MI, USA],” said Prof. Walter.
The research also creates new strategies where biochemical pathways can be replicated outside the cell to develop biomedical applications such as detection methods for diagnostic platforms. “An even loftier and more valuable goal is to engineer highly programmed cascading enzyme pathways on DNA nanostructure platforms with control of input and output sequences. Achieving this goal would not only allow researchers to mimic the elegant enzyme cascades found in nature and attempt to understand their underlying mechanisms of action, but would facilitate the construction of artificial cascades that do not exist in nature,” said Prof. Yan.
Related Links:
Arizona State University
University of Michigan
Arizona State University (ASU; Tempe, USA) scientists, working with colleagues at the University of Michigan (Ann Arbor, USA), have developed the technology for future biomedical and energy applications. The study’s findings were published online May 25, 2014, in the journal Nature Nanotechnology. Led by ASU Prof. Hao Yan, the research team included ASU Biodesign Institute researchers along with colleagues Prof. Nils Walter and postdoctoral fellow Alexander Johnson-Buck at the University of Michigan.
Researchers in the field of DNA nanotechnology, taking advantage of the binding properties of the chemical building blocks of DNA, twist and self-assemble DNA into ever-more imaginative two- and three-dimensional structures for medical, electronic and energy applications.
In the latest cutting-edge approach, the researcher attempted to mimic enzymes outside the friendly boundaries of the cell. These enzymes speed up chemical reactions, used in bodies for the digestion of food into sugars and energy during human metabolism, for example.
“We look to nature for inspiration to build human-made molecular systems that mimic the sophisticated nanoscale machineries developed in living biological systems, and we rationally design molecular nanoscaffolds to achieve biomimicry at the molecular level,” Prof. Yan said, who also directs the Center for Molecular Design and Biomimicry at the Biodesign Institute.
With enzymes, all moving parts must be tightly controlled and coordinated; otherwise the reaction will not work. The moving parts, which include molecules such as substrates and cofactors, all fit into a complex enzyme pocket just like a baseball into a glove. Once all the chemical parts have found their place in the pocket, the energetics that control the reaction become favorable, and swiftly make chemistry happen. Each enzyme releases its product, similar to a baton handed off in a relay race, to another enzyme to carry out the next phase in a biochemical pathway in the human body.
For the new study, the researchers chose a pair of universal enzymes, glucose-6 phosphate dehydrogenase (G6pDH) and malate dehydrogenase (MDH), that are important for biosynthesis—making fats, amino acids, and nucleic acids vital for all life. For instance, flaws found in the pathway are known to cause anemia in humans. “Dehydrogenase enzymes are particularly important since they supply most of the energy of a cell,” said Prof. Walter. “Work with these enzymes could lead to future applications in green energy production such as fuel cells using biomaterials for fuel.”
In the pathway, G6pDH uses the glucose sugar substrate and a cofactor called NAD to peel off hydrogen atoms from glucose and transfer to the next enzyme, MDH, to continue and produce malic acid and generate NADH in the process, which is used for as a key cofactor for biosynthesis.
Re-creating this enzyme pair in the test tube and having it work outside the cell is a big hurdle for DNA nanotechnology. To meet the challenge, they first constructed a DNA scaffold that looks like several paper towel rolls glued together. Using a computer program, they were able to engineer the chemical building blocks of the DNA sequence so that the scaffold would self-assemble. Next, the two enzymes were attached to the ends of the DNA tubes. In the middle of the DNA scaffold, they attached a single strand of DNA, with the NAD+ tethered to the end like a ball and string. Dr. Yan refers to this as a swinging arm, which is long, and flexible enough to rock back and forth between the enzymes.
Once the system was developed in vitro by heating up and cooling the DNA, which leads to self-assembly, the enzyme parts were added in. They confirmed the structure using a high-powered an atomic force microscope (AFM), which can see down to the nanoscale.
Similar to architects, the scientists first built a full-scale model so they could test and measure the spatial geometry and structures, including in their setup a tiny fluorescent dye attached to the swinging arm. If the reaction takes place, they can measure a red beacon signal that the dye gives off—but in this case, unlike a traffic signal, a red light means the reaction works. Next, they tried the enzyme system and found that it worked just the same as a cellular enzyme cascade. They also measured the effect when varying the distance between the swinging arm and the enzymes. They discovered that there was a perfect spot, at 7 nm, where the arm angle was parallel to the enzyme pair.
With a single swinging arm in the in vitro system working just like the cellular enzymes, the researchers added arms, assessing the limits of the system with up to four added arms. They were able to show that as each arm was added, the G6pDH could keep up to make even more product, while the MDH’s limit was two swinging arms. “Lining enzymes up along a designed assembly line like Henry Ford did for auto parts is particularly satisfying for someone living near the motor city Detroit [MI, USA],” said Prof. Walter.
The research also creates new strategies where biochemical pathways can be replicated outside the cell to develop biomedical applications such as detection methods for diagnostic platforms. “An even loftier and more valuable goal is to engineer highly programmed cascading enzyme pathways on DNA nanostructure platforms with control of input and output sequences. Achieving this goal would not only allow researchers to mimic the elegant enzyme cascades found in nature and attempt to understand their underlying mechanisms of action, but would facilitate the construction of artificial cascades that do not exist in nature,” said Prof. Yan.
Related Links:
Arizona State University
University of Michigan
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







