Smart Drug-Delivery Cage Designed to Fight Cancer
|
By LabMedica International staff writers Posted on 04 Jun 2014 |

Image: A general synthetic route was developed to encapsulate small molecules in monodisperse zeolitic imid-azolate framework-8 (ZIF-8) nanospheres for drug delivery. Electron microscopy, powder X-ray diffraction, and elemental analysis show that the small-molecule-encapsulated ZIF-8 nanospheres are uniform 70-nm particles with single-crystalline structure. Several small molecules, including fluorescein and the anticancer drug camptothecin, were encapsulated inside of the ZIF-8 framework. Evaluation of fluorescein-encapsulated ZIF-8 nanospheres in the MCF-7 breast cancer cell line demonstrated cell internalization and minimal cytotoxicity. The 70 nm particle size facilitates cellular uptake, and the pH-responsive dissociation of the ZIF-8 framework likely results in endosomal release of the small-molecule cargo, thereby rendering the ZIF-8 scaffold an ideal drug delivery vehicle. To confirm this, the researchers demonstrated that camptothecin encapsulated ZIF-8 particles show enhanced cell death, indicative of internalization and intracellular release of the drug. To demonstrate the versatility of this ZIF-8 system, iron oxide nanoparticles were also encapsulated into the ZIF-8 nanospheres, thereby endowing magnetic features to these nanospheres Photo courtesy of the American Chemical Society (ACS) journal ACS Nano).
Chemists have developed a nano-scale cage of chemical bonds that entraps small molecule drugs and then infiltrates cancer cells, showing potential to act as a “smart” drug-delivery processes to fight cancer and other disorders.
Boston College (Chestnut Hill, MA, USA) Assistant Professors of Chemistry Drs. Frank Tsung and Eranthie Weerapana developed the chemical framework, a “nanosphere” cultivated with a combination of metal and organic substances. Laboratory tests showed the nanospheres effectively penetrated and killed breast cancer cells. “We were very excited to see the results,” said Dr. Tsung. “We always want our solutions to work, but to see our organic-based drug delivery system attack and kill cancer cells in our lab tests was extremely gratifying. We know there is much work to be done, but we’re excited about the potential in this advance.”
In the search to enhance the work of drugs that fight cancer and other diseases, researchers have looked for ways to exploit the benefits of nanotechnology, in this case a nanoscale metal organic framework (MOF). These frameworks have proven useful in certain functions, but until now demonstrated instability in the body’s watery environment, according to Dr. Tsung.
Therefore, Drs. Tsung and Weerapana set out to create a framework that can effectively transport the drug through the body and deliver it to target cells. Efficiency is a crucial issue, as some drugs fail to fully penetrate cell membranes. Some drugs erode before they find their targets, requiring increased dosages, which are expensive and can produce annoying side effects in patients.
Drs. Tsung and Weerapana’s nanosphere overcomes these significant challenges, the two faculty members reported on March 25, 2014, in the American Chemical Society (ACS) journal ACS Nano. Dr. Tsung and researchers in his lab were able to cultivate the nanospheres by creating organic links between tens of thousands of zinc ions, essentially creating a constellation of 800 tiny cage-like structures capable of entrapping small molecules. The overall size of these constellations must be large enough to transport proper dosage, yet small enough to penetrate the target cell membrane. “That size between 50 and 100 nm is the magic number,” said Dr. Tsung. “If you have too small a framework, it won’t work. If we stay between 50–100 nm, it can penetrate the cancer cell. Our nanosphere is in the 70-nm range, which we think is ideal.”
Next, the researchers had to retain some control on the structure, so that it would release the drug dosage once it entered the cancer cell membrane. The investigators then utilized a unique property of the framework that would trigger drug release based on a decrease in pH levels. Whereas the body’s pH level is 7.4, the extracellular microenvironments of cancer cells typically have lower pH. Upon entering the cancer cell, the lower pH level triggers a chemical reaction that releases the drug, according to Dr. Tsung.
“It is the body’s own mechanisms that trigger the release of the drug, which is a huge advantage,” Dr. Tsung said. “When the nanosphere enters the cancer cell, the lower pH level destabilizes the structure, which begins to break apart and releases the drug so it can begin to do its job of attacking and killing cancer cells.”
Dr. Tsung reported that their research showed that targeting could be improved by incorporating iron oxide into the structure and using an external magnetic field to direct the drug to the target cells. He noted that the researcher’s next step is to functionalize the compound with antibodies to use the body’s own immune response to attract the nanosphere to the disease cells. Dr. Tsung stated that the organic components in the nanosphere might make it easier to functionalize with an antibody.
According to Dr. Tsung, nanospheres are non-toxic, and they achieved the unique structure by carefully controlling temperature during fabrication. Furthermore, the structures were cultivated from low-cost, readily available materials that can help cut costs.
Related Links:
Boston College
Boston College (Chestnut Hill, MA, USA) Assistant Professors of Chemistry Drs. Frank Tsung and Eranthie Weerapana developed the chemical framework, a “nanosphere” cultivated with a combination of metal and organic substances. Laboratory tests showed the nanospheres effectively penetrated and killed breast cancer cells. “We were very excited to see the results,” said Dr. Tsung. “We always want our solutions to work, but to see our organic-based drug delivery system attack and kill cancer cells in our lab tests was extremely gratifying. We know there is much work to be done, but we’re excited about the potential in this advance.”
In the search to enhance the work of drugs that fight cancer and other diseases, researchers have looked for ways to exploit the benefits of nanotechnology, in this case a nanoscale metal organic framework (MOF). These frameworks have proven useful in certain functions, but until now demonstrated instability in the body’s watery environment, according to Dr. Tsung.
Therefore, Drs. Tsung and Weerapana set out to create a framework that can effectively transport the drug through the body and deliver it to target cells. Efficiency is a crucial issue, as some drugs fail to fully penetrate cell membranes. Some drugs erode before they find their targets, requiring increased dosages, which are expensive and can produce annoying side effects in patients.
Drs. Tsung and Weerapana’s nanosphere overcomes these significant challenges, the two faculty members reported on March 25, 2014, in the American Chemical Society (ACS) journal ACS Nano. Dr. Tsung and researchers in his lab were able to cultivate the nanospheres by creating organic links between tens of thousands of zinc ions, essentially creating a constellation of 800 tiny cage-like structures capable of entrapping small molecules. The overall size of these constellations must be large enough to transport proper dosage, yet small enough to penetrate the target cell membrane. “That size between 50 and 100 nm is the magic number,” said Dr. Tsung. “If you have too small a framework, it won’t work. If we stay between 50–100 nm, it can penetrate the cancer cell. Our nanosphere is in the 70-nm range, which we think is ideal.”
Next, the researchers had to retain some control on the structure, so that it would release the drug dosage once it entered the cancer cell membrane. The investigators then utilized a unique property of the framework that would trigger drug release based on a decrease in pH levels. Whereas the body’s pH level is 7.4, the extracellular microenvironments of cancer cells typically have lower pH. Upon entering the cancer cell, the lower pH level triggers a chemical reaction that releases the drug, according to Dr. Tsung.
“It is the body’s own mechanisms that trigger the release of the drug, which is a huge advantage,” Dr. Tsung said. “When the nanosphere enters the cancer cell, the lower pH level destabilizes the structure, which begins to break apart and releases the drug so it can begin to do its job of attacking and killing cancer cells.”
Dr. Tsung reported that their research showed that targeting could be improved by incorporating iron oxide into the structure and using an external magnetic field to direct the drug to the target cells. He noted that the researcher’s next step is to functionalize the compound with antibodies to use the body’s own immune response to attract the nanosphere to the disease cells. Dr. Tsung stated that the organic components in the nanosphere might make it easier to functionalize with an antibody.
According to Dr. Tsung, nanospheres are non-toxic, and they achieved the unique structure by carefully controlling temperature during fabrication. Furthermore, the structures were cultivated from low-cost, readily available materials that can help cut costs.
Related Links:
Boston College
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more






 Analyzer.jpg)
