LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

RNAi Therapy Reduces Huntington's Disease Symptoms in Mouse Model

By LabMedica International staff writers
Posted on 01 Jun 2014
A research team used advanced gene therapy techniques to block the production of huntingtin (Htt), the toxic protein found in the brains of patients suffering from the fatal, inherited neurodegenerative disorder, Huntington's disease (HD).

Huntington’s disease is caused by a dominant gene that encodes the huntingtin protein. The 5' end of the HD gene has a sequence of three DNA bases, cytosine-adenine-guanine (CAG), coding for the amino acid glutamine, that is repeated multiple times. Normal persons have a CAG repeat count of between seven and 35 repeats, while the mutated form of the gene has anywhere from 36 to 180 repeats. The mutant form of huntingtin is broken down into toxic peptides, which contribute to the pathology of the syndrome.

RNA interference (RNAi) therapy that seeks to selectively reduce the expression of Htt has emerged as a potential therapeutic strategy for this disorder. Investigators at the bio-therapeutics research company Genzyme (Framingham, MA, USA) have continued this approach by aiming to lower Htt levels and to correct the behavioral, biochemical, and neuropathological deficits shown to be associated with the YAC128 mouse model of Huntington's disease. To do this they treated these animals with a recombinant adeno-associated viral (AAV) vector that had been designed to deliver siRNA that targeted the degradation of the Htt transcript.

Results that support the continued development of AAV-mediated RNAi as a therapeutic strategy for HD were published in the May 21, 2014, issue of the journal Human Gene Therapy. They revealed that AAV-mediated RNAi was effective at transducing greater than 80% of the cells in the striatum and partially reducing the levels (by about 40%) of both wild-type and mutant Htt in this region. Concomitant with these reductions were significant improvements in behavioral deficits, reduction of striatal Htt aggregates, and partial correction of the aberrant striatal transcriptional profile observed in YAC128 mice.

Of particular importance was the finding that a partial reduction of both the mutant and wild-type Htt levels was not associated with any notable overt neurotoxicity.

Related Links:
Genzyme


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Hemodynamic System Monitor
OptoMonitor

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more