Penny Contact Lenses Created from Clear Liquid
|
By LabMedica International staff writers Posted on 07 May 2014 |

Image: A set of droplet lenses on a microscope coverslip held up by ANU researcher Steve Lee (Photo courtesy of Stuart Hay).

Image: A single droplet lens suspended on a fingertip (Photo courtesy of Stuart Hay).
One droplet of clear liquid can bend light, acting as a lens. Now, by utilizing this well-known phenomenon, researchers have developed a new process to create inexpensive, high quality lenses that should cost less than USD 0.01 apiece.
Because the lenses being so inexpensive, they can be used in a variety of applications, including tools to detect diseases in the field, scientific research in the lab and optical lenses and microscopes for education in classrooms.
“What I’m really excited about is that it opens up lens fabrication technology,” stated Dr. Steve Lee from the Research School of Engineering at the Australian National University (ANU; Canberra, Australia) of the new technique, which he and his colleagues described in an article published April 24, 2014, in the Optical Society’s (OSA) open-access journal Biomedical Optics Express.
Many conventional lenses are made the same way lenses have been made since Isaac Newton’s day—by grinding and polishing a flat disk of glass into a specific curved shape. Others are produced with more sophisticated methods, such as pouring gel-like materials molds. But both approaches can be costly and complicated, according to Dr. Lee. With the new technology, the researchers harvest solid lenses of differing focal lengths by suspending and curing droplets of a gel-like material—a simple and inexpensive approach that avoids costly or complicated machinery. “What I did was to systematically fine-tune the curvature that’s formed by a simple droplet with the help of gravity, and without any molds,” he explained.
Although scientists have long known that a droplet can act as a lens, no one tried to see how good a lens it could be. Now, the team has developed a process that pushes this idea to its limits, according to the researchers. All that is required is an oven, a microscope glass slide, and a common, gel-like silicone polymer called polydimethylsiloxane (PDMS). First, a small amount of PDMS is dropped onto the slide. Then, it is baked at 70 °C to harden it, creating a base. Then, another squirt of PDMS is dropped onto the base and the slide is flipped over. Gravity pulls the new droplet down into a parabolic shape. The droplet is baked again to solidify the lens. More drops can then be added to hone the shape of the lens that also greatly increases the imaging quality of the lens. “It’s a low cost and easy lens-making recipe,” Dr. Lee said.
The researchers made lenses about a few millimeters thick with a magnification power of 160 times and a resolution of about 4 micrometers—two times lower in optical resolution than many commercial microscopes, but more than three orders of magnitude lower in cost. “We’re quite surprised at the magnification enhancement using such a simple process,” he noted.
Their low cost--low enough to make them disposable--allows for a variety of uses. In particular, the researchers have constructed a lens attachment that converts a smartphone camera into a dermascope, a tool to diagnose skin diseases such as melanoma. Whereas common dermascopes can cost USD 500 or more, the phone version costs approximately USD 2. The new dermascope, which was made using a three-dimensional (3D) printer and is designed for use in rural areas or developing countries, is slated to be commercially available in just a few months, according to Dr. Lee. A similar smartphone-based tool can also help farmers identify pests out in their fields.
Dr. Lee also foresees that the lenses could be used in the lab as implantable lenses that biologists can use to study cells in vivo. The high cost of conventional lenses usually dissuades scientists from implanting them into mice, he reported. The lenses would also be suitable for hobbyists or as part of low cost mobile microscopes that can be distributed to children and others for educational or outreach purposes, he added. “Simple optics can be very powerful.”
So far, the researchers cannot make lenses much bigger than half an inch in diameter. But to expand the range of applications, the investigators are now fine-tuning the process to make lenses as large as two inches and increasing the lens’s optical performance.
Related Links:
Australian National University
Because the lenses being so inexpensive, they can be used in a variety of applications, including tools to detect diseases in the field, scientific research in the lab and optical lenses and microscopes for education in classrooms.
“What I’m really excited about is that it opens up lens fabrication technology,” stated Dr. Steve Lee from the Research School of Engineering at the Australian National University (ANU; Canberra, Australia) of the new technique, which he and his colleagues described in an article published April 24, 2014, in the Optical Society’s (OSA) open-access journal Biomedical Optics Express.
Many conventional lenses are made the same way lenses have been made since Isaac Newton’s day—by grinding and polishing a flat disk of glass into a specific curved shape. Others are produced with more sophisticated methods, such as pouring gel-like materials molds. But both approaches can be costly and complicated, according to Dr. Lee. With the new technology, the researchers harvest solid lenses of differing focal lengths by suspending and curing droplets of a gel-like material—a simple and inexpensive approach that avoids costly or complicated machinery. “What I did was to systematically fine-tune the curvature that’s formed by a simple droplet with the help of gravity, and without any molds,” he explained.
Although scientists have long known that a droplet can act as a lens, no one tried to see how good a lens it could be. Now, the team has developed a process that pushes this idea to its limits, according to the researchers. All that is required is an oven, a microscope glass slide, and a common, gel-like silicone polymer called polydimethylsiloxane (PDMS). First, a small amount of PDMS is dropped onto the slide. Then, it is baked at 70 °C to harden it, creating a base. Then, another squirt of PDMS is dropped onto the base and the slide is flipped over. Gravity pulls the new droplet down into a parabolic shape. The droplet is baked again to solidify the lens. More drops can then be added to hone the shape of the lens that also greatly increases the imaging quality of the lens. “It’s a low cost and easy lens-making recipe,” Dr. Lee said.
The researchers made lenses about a few millimeters thick with a magnification power of 160 times and a resolution of about 4 micrometers—two times lower in optical resolution than many commercial microscopes, but more than three orders of magnitude lower in cost. “We’re quite surprised at the magnification enhancement using such a simple process,” he noted.
Their low cost--low enough to make them disposable--allows for a variety of uses. In particular, the researchers have constructed a lens attachment that converts a smartphone camera into a dermascope, a tool to diagnose skin diseases such as melanoma. Whereas common dermascopes can cost USD 500 or more, the phone version costs approximately USD 2. The new dermascope, which was made using a three-dimensional (3D) printer and is designed for use in rural areas or developing countries, is slated to be commercially available in just a few months, according to Dr. Lee. A similar smartphone-based tool can also help farmers identify pests out in their fields.
Dr. Lee also foresees that the lenses could be used in the lab as implantable lenses that biologists can use to study cells in vivo. The high cost of conventional lenses usually dissuades scientists from implanting them into mice, he reported. The lenses would also be suitable for hobbyists or as part of low cost mobile microscopes that can be distributed to children and others for educational or outreach purposes, he added. “Simple optics can be very powerful.”
So far, the researchers cannot make lenses much bigger than half an inch in diameter. But to expand the range of applications, the investigators are now fine-tuning the process to make lenses as large as two inches and increasing the lens’s optical performance.
Related Links:
Australian National University
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







