Molecules Engineered to Fight Alzheimer’s Disease and Other Neurodegenerative Disorders
|
By LabMedica International staff writers Posted on 05 May 2014 |
Researchers have engineered a set of molecules with the potential to treat most neurodegenerative diseases that are characterized by misfolded proteins, such as Alzheimer’s, Parkinson’s, and Huntington’s diseases.
These molecules are based on what NeuroPhage Pharmaceuticals, Inc. (Cambridge, MA, USA), the developer of the technology, calls a general amyloid interaction motif (GAIM), which recognizes a characteristic that is typical to many toxic, misfolded proteins, not only one type of misfolded protein. This approach provides a range of therapeutic targets, so that a number of pathologies, such as amyloid beta plaques, tau tangles and alpha-synuclein Lewy bodies, can all be tackled simultaneously with a single drug candidate.
Moreover, GAIM molecules have been shown to not only prevent the formation of new toxic protein aggregates but can also dissipate existing aggregates in the form of both soluble oligomers and insoluble fibers, such as plaques and tangles.
“The research published […] describes GAIM, NeuroPhage’s unique approach to treat diseases characterized by misfolded proteins. GAIM has the potential to provide a more robust response than previous therapies because it enables the simultaneous targeting of multiple pathologies within a single disease,” said Dr. Richard Fisher, chief scientific officer at NeuroPhage. The findings of this technology were published online April 22, 2014, in the Journal of Molecular Biology. “Symptoms of neurodegenerative diseases often appear well after the troublesome aggregates have begun to accumulate in the brain. By then, therapies that only target newly forming aggregates are likely to only slow the progression of the disease and are believed to be too late once the aggregates are formed,” said Dr. Gregory A. Petsko, a professor of neurology at Weill Cornell Medical College (New York, NY, USA) and a professor of biochemistry and chemistry, at Brandeis University (Waltham, MA, USA). “Therapies based on GAIM would represent a completely new paradigm in the treatment of many neurodegenerative diseases with their potential to ameliorate existing symptoms and prevent disease progression. The hope is this will eventually lead to a real treatment for Alzheimer’s disease, but for now, the science behind it is quite compelling.”
Researchers used a range of techniques, including X-ray fiber diffraction and nuclear magnetic resonance spectroscopy (NMRS), to demonstrate the activities of GAIM. They found that GAIM effectively binds to multiple types of misfolded proteins during their formation in such a way that prevents new toxic protein aggregates from forming. Furthermore, upon incubating GAIM with various misfolded proteins, the researchers observed that GAIM disrupted these assemblies of misfolded proteins by causing a conformational alteration in their structures. This structural change could enable the body’s natural disposal processes to recognize and clear the misfolded proteins, which in principle, would enable the brain to return to a more normal state. The capability to destabilize pre-existing aggregates of multiple types of misfolded proteins is unique in the field.
The discovery of GAIM has led to the creation of NeuroPhage’s lead candidate, NPT088, which is the GAIM motif fused to a portion of a human antibody. The outcome is a potential therapeutic that can be simply delivered to patients. NeuroPhage has gathered extensive preclinical data on this candidate, showing its effectiveness across disease models of Alzheimer’s, Parkinson’s and related diseases characterized by aggregation of the tau protein. NeuroPhage expects that NPT088 will be ready for human studies in late 2015.
“With recent advances in imaging agents for beta-amyloid and tau in Alzheimer’s disease, we believe we should be able to demonstrate clinical proof of mechanism in a phase 1b study with NPT088,” said Jonathan Solomon, CEO at NeuroPhage. “If successful, we would then have the opportunity to pursue many therapeutic options in several neurodegenerative diseases of protein aggregation.”
NeuroPhage Pharmaceuticals has fusion-protein drug candidates in development for neurodegenerative diseases, many of which cause progressive mental decline and dementia. NeuroPhage is initially developing candidates to treat Alzheimer’s and Parkinson’s disease, in which a number of different misfolded proteins accumulate, acting jointly to additionally intensify disease progression.
Related Links:
NeuroPhage Pharmaceuticals
These molecules are based on what NeuroPhage Pharmaceuticals, Inc. (Cambridge, MA, USA), the developer of the technology, calls a general amyloid interaction motif (GAIM), which recognizes a characteristic that is typical to many toxic, misfolded proteins, not only one type of misfolded protein. This approach provides a range of therapeutic targets, so that a number of pathologies, such as amyloid beta plaques, tau tangles and alpha-synuclein Lewy bodies, can all be tackled simultaneously with a single drug candidate.
Moreover, GAIM molecules have been shown to not only prevent the formation of new toxic protein aggregates but can also dissipate existing aggregates in the form of both soluble oligomers and insoluble fibers, such as plaques and tangles.
“The research published […] describes GAIM, NeuroPhage’s unique approach to treat diseases characterized by misfolded proteins. GAIM has the potential to provide a more robust response than previous therapies because it enables the simultaneous targeting of multiple pathologies within a single disease,” said Dr. Richard Fisher, chief scientific officer at NeuroPhage. The findings of this technology were published online April 22, 2014, in the Journal of Molecular Biology. “Symptoms of neurodegenerative diseases often appear well after the troublesome aggregates have begun to accumulate in the brain. By then, therapies that only target newly forming aggregates are likely to only slow the progression of the disease and are believed to be too late once the aggregates are formed,” said Dr. Gregory A. Petsko, a professor of neurology at Weill Cornell Medical College (New York, NY, USA) and a professor of biochemistry and chemistry, at Brandeis University (Waltham, MA, USA). “Therapies based on GAIM would represent a completely new paradigm in the treatment of many neurodegenerative diseases with their potential to ameliorate existing symptoms and prevent disease progression. The hope is this will eventually lead to a real treatment for Alzheimer’s disease, but for now, the science behind it is quite compelling.”
Researchers used a range of techniques, including X-ray fiber diffraction and nuclear magnetic resonance spectroscopy (NMRS), to demonstrate the activities of GAIM. They found that GAIM effectively binds to multiple types of misfolded proteins during their formation in such a way that prevents new toxic protein aggregates from forming. Furthermore, upon incubating GAIM with various misfolded proteins, the researchers observed that GAIM disrupted these assemblies of misfolded proteins by causing a conformational alteration in their structures. This structural change could enable the body’s natural disposal processes to recognize and clear the misfolded proteins, which in principle, would enable the brain to return to a more normal state. The capability to destabilize pre-existing aggregates of multiple types of misfolded proteins is unique in the field.
The discovery of GAIM has led to the creation of NeuroPhage’s lead candidate, NPT088, which is the GAIM motif fused to a portion of a human antibody. The outcome is a potential therapeutic that can be simply delivered to patients. NeuroPhage has gathered extensive preclinical data on this candidate, showing its effectiveness across disease models of Alzheimer’s, Parkinson’s and related diseases characterized by aggregation of the tau protein. NeuroPhage expects that NPT088 will be ready for human studies in late 2015.
“With recent advances in imaging agents for beta-amyloid and tau in Alzheimer’s disease, we believe we should be able to demonstrate clinical proof of mechanism in a phase 1b study with NPT088,” said Jonathan Solomon, CEO at NeuroPhage. “If successful, we would then have the opportunity to pursue many therapeutic options in several neurodegenerative diseases of protein aggregation.”
NeuroPhage Pharmaceuticals has fusion-protein drug candidates in development for neurodegenerative diseases, many of which cause progressive mental decline and dementia. NeuroPhage is initially developing candidates to treat Alzheimer’s and Parkinson’s disease, in which a number of different misfolded proteins accumulate, acting jointly to additionally intensify disease progression.
Related Links:
NeuroPhage Pharmaceuticals
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







