LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Cancer Cells 3D Printed to Mimic Tumors

By LabMedica International staff writers
Posted on 24 Apr 2014
Image: The model consists of a grid structure, 10 mm in width and length, made from gelatin, alginate and fibrin, which recreates the fibrous proteins that make up the extracellular matrix of a tumor (Photo courtesy of Institute of Physics (IOP) Publishing).
Image: The model consists of a grid structure, 10 mm in width and length, made from gelatin, alginate and fibrin, which recreates the fibrous proteins that make up the extracellular matrix of a tumor (Photo courtesy of Institute of Physics (IOP) Publishing).
A group of Chinese and American researchers have successfully created a three-dimensional (3D) model of a cancerous tumor using a 3D printer.

The model, which consists of a scaffold of fibrous proteins coated in cervical cancer cells, has provided an accurate 3D representation of a tumor’s environment and could help in the discovery of new drugs and cast new light on how tumors develop, grow, and metastasize throughout the body.

The study’s findings were published April 11, 2014, in the Institute of Physics (IOP) Publishing’s journal Biofabrication. The model consists of a grid structure, 10 mm in width and length, composed of gelatin, alginate, and fibrin, which recreates the fibrous proteins that make up the extracellular matrix of a tumor.

The grid structure is coated in Hela cells—an unusual, “immortal” cell line that was first derived from a cervical cancer patient in 1951. Because the cells’ ability to divide forever in a laboratory setting, the cell line has been used in some of the most substantial scientific studies of the past 50 years.

Although the most effective approach to studying tumors is to do so in a clinical trial, ethical and safety restrictions make it hard for these types of studies to be performed on a wide scale. To overcome this, 2D models, consisting of a single layer of cells, have been created to mimic the physiologic environment of tumors so that different types of drugs can be evaluated in a realistic manner. With the dawn of 3D printing, it is now possible to provide a more realistic representation of the environment surrounding a tumor, which the researchers have demonstrated in this study by comparing results from their 3D model with results from a 2D model.

In addition to assessing if the cells remained viable (alive) after printing, the researchers also examined how the cells proliferated, how they expressed a specific set of proteins, and how resistant they were to anticancer agents. The proteins examined were part of the matrix metalloproteinases (MMP) protein family. These proteins are used by cancer cells to break through their surrounding matrix and help tumors to spread. Resistance to anticancer drugs, which was also studied, is a good indicator of tumor malignancy.

The findings revealed that 90% of the cancer cells remained viable after the printing process. The findings also demonstrated that the 3D model had more similar characteristics to a tumor compared to 2D models and in the 3D model the cancer cells showed a higher proliferation rate, higher protein expression and higher resistance to anticancer drugs.

The lead author of the research, Prof. Wei Sun, from Tsinghua University (Beijing, China), and Drexel University (Philadelphia, PA, USA), said, “We have provided a scalable and versatile 3D cancer model that shows a greater resemblance to natural cancer than 2D cultured cancer cells. With further understanding of these 3D models, we can use them to study the development, invasion, metastasis and treatment of cancer using specific cancer cells from patients. We can also use these models to test the efficacy and safety of new cancer treatment therapies and new cancer drugs.”

Related Links:

Tsinghua University
Drexel University


Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hybrid Pipette
SWITCH
Pipette
Accumax Smart Series

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more