Silly Putty Component Used to Help in Stem Cell Therapies
|
By LabMedica International staff writers Posted on 22 Apr 2014 |

Image: University of Michigan researchers have found that mechanical forces in the environment of human embryonic stem cells influences how they differentiate, or morph into the body\'s different cell types. To arrive at the findings, they cultured the stem cells on ultrafine carpets made of microscopic posts (Photo courtesy of Ye Tao, Rose Anderson, Yubing Sun, and Jianping Fu).
The sponginess of the setting where human embryonic stem cells are growing, affects the type of specialized cells they will ultimately become, new research shows. Scientists persuaded human embryonic stem cells to convert into working spinal cord cells more effectively by growing the cells on a soft, ultrafine carpet made of a key ingredient in Silly Putty [a substance with unusual properties based on silicone polymers, used as a toy].
The study’s findings were published online April 13, 2014, in the journal Nature Materials. This research is the first to directly link physical, instead of chemical, signals to human embryonic stem cell differentiation. Differentiation is the process of the source cells morphing into the body’s more than 200 cell types that become bone, muscle, nerves, and organs.
Jianping Fu, a University of Michigan (U-M; Ann Arbor, USA) assistant professor of mechanical engineering, noted that the findings offer the potential of a more effective way to guide stem cells to differentiate and potentially provide therapies for diseases such as amyotrophic lateral sclerosis (also known as Lou Gehrig’s disease), Huntington’s, or Alzheimer’s.
In the specially modified growth system, the “carpets,” Prof. Fu and his colleagues designed microscopic posts of the Silly Putty component polydimethylsiloxane to serve as the threads. By varying the post height, the researchers can adjust the stiffness of the surface they grow cells on. Shorter posts are more rigid—similar to an industrial carpet. Taller ones are softer—more plush.
The scientists found that stem cells they grew on the tall, softer micropost carpets turned into nerve cells much faster and more frequently than those they grew on the stiffer surfaces. After 23 days, the colonies of spinal cord cells—motor neurons that regulate how muscles move—that grew on the softer micropost carpets were four times more pure and 10 times larger than those growing on either traditional plates or rigid carpets.
“This is extremely exciting,” Prof. Fu said. “To realize promising clinical applications of human embryonic stem cells, we need a better culture system that can reliably produce more target cells that function well. Our approach is a big step in that direction, by using synthetic microengineered surfaces to control mechanical environmental signals.”
Prof. Fu is collaborating with physicians at the U-M Medical School. Eva Feldman, a professor of neurology, studies amyotrophic lateral sclerosis (ALS), which paralyzes patients as it kills motor neurons in the brain and spinal cord.
Researchers such as Prof. Feldman believe stem cell therapies—both from embryonic and adult varieties—might help patients grow new nerve cells. The researchers technique to try to generate fresh neurons from patients’ own cells. At this point, they are examining how and whether the process could work, and they hope to try it in humans in the future. “Prof. Fu and colleagues have developed an innovative method of generating high-yield and high-purity motor neurons from stem cells,” Prof. Feldman said. “For ALS, discoveries like this provide tools for modeling disease in the laboratory and for developing cell-replacement therapies.”
Prof. Fu’s findings go deeper than cell counts. The researchers verified that the new motor neurons they obtained on soft micropost carpets showed electrical behaviors comparable to those of neurons in the human body. They also identified a signaling pathway involved in regulating the mechanically sensitive behaviors. A signaling pathway is a route through which proteins ferry chemical messages from the cell’s borders to deep inside it. The pathway they narrowed in on, called Hippo/YAP, is also involved in controlling organ size and both causing and preventing tumor growth.
Prof. Fu reported that his findings could also provide clues into how embryonic stem cells differentiate in the body. “Our work suggests that physical signals in the cell environment are important in neural patterning, a process where nerve cells become specialized for their specific functions based on their physical location in the body,” he said.
Related Links:
University of Michigan
The study’s findings were published online April 13, 2014, in the journal Nature Materials. This research is the first to directly link physical, instead of chemical, signals to human embryonic stem cell differentiation. Differentiation is the process of the source cells morphing into the body’s more than 200 cell types that become bone, muscle, nerves, and organs.
Jianping Fu, a University of Michigan (U-M; Ann Arbor, USA) assistant professor of mechanical engineering, noted that the findings offer the potential of a more effective way to guide stem cells to differentiate and potentially provide therapies for diseases such as amyotrophic lateral sclerosis (also known as Lou Gehrig’s disease), Huntington’s, or Alzheimer’s.
In the specially modified growth system, the “carpets,” Prof. Fu and his colleagues designed microscopic posts of the Silly Putty component polydimethylsiloxane to serve as the threads. By varying the post height, the researchers can adjust the stiffness of the surface they grow cells on. Shorter posts are more rigid—similar to an industrial carpet. Taller ones are softer—more plush.
The scientists found that stem cells they grew on the tall, softer micropost carpets turned into nerve cells much faster and more frequently than those they grew on the stiffer surfaces. After 23 days, the colonies of spinal cord cells—motor neurons that regulate how muscles move—that grew on the softer micropost carpets were four times more pure and 10 times larger than those growing on either traditional plates or rigid carpets.
“This is extremely exciting,” Prof. Fu said. “To realize promising clinical applications of human embryonic stem cells, we need a better culture system that can reliably produce more target cells that function well. Our approach is a big step in that direction, by using synthetic microengineered surfaces to control mechanical environmental signals.”
Prof. Fu is collaborating with physicians at the U-M Medical School. Eva Feldman, a professor of neurology, studies amyotrophic lateral sclerosis (ALS), which paralyzes patients as it kills motor neurons in the brain and spinal cord.
Researchers such as Prof. Feldman believe stem cell therapies—both from embryonic and adult varieties—might help patients grow new nerve cells. The researchers technique to try to generate fresh neurons from patients’ own cells. At this point, they are examining how and whether the process could work, and they hope to try it in humans in the future. “Prof. Fu and colleagues have developed an innovative method of generating high-yield and high-purity motor neurons from stem cells,” Prof. Feldman said. “For ALS, discoveries like this provide tools for modeling disease in the laboratory and for developing cell-replacement therapies.”
Prof. Fu’s findings go deeper than cell counts. The researchers verified that the new motor neurons they obtained on soft micropost carpets showed electrical behaviors comparable to those of neurons in the human body. They also identified a signaling pathway involved in regulating the mechanically sensitive behaviors. A signaling pathway is a route through which proteins ferry chemical messages from the cell’s borders to deep inside it. The pathway they narrowed in on, called Hippo/YAP, is also involved in controlling organ size and both causing and preventing tumor growth.
Prof. Fu reported that his findings could also provide clues into how embryonic stem cells differentiate in the body. “Our work suggests that physical signals in the cell environment are important in neural patterning, a process where nerve cells become specialized for their specific functions based on their physical location in the body,” he said.
Related Links:
University of Michigan
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







