We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Live Cell Imaging Ready to Transform Disease Diagnostics and Drug Discovery

By LabMedica International staff writers
Posted on 31 Mar 2014
Print article
Breakthroughs in fluorescent applications, electronics, optics, and molecular biology have made live cell imaging technologies more accessible to life scientists trying to better understand biologic dynamics and visualize cellular events in living organisms, according to recent market research. The introduction of “omics” technologies and nanotechnologies into mainstream medicine has already enabled commercial lab-on-a-chip microfluidics systems that analyze cells, DNA, RNA, and proteins. As live cell imaging evolves, it will become a key player in disease diagnostics and drug discovery processes.

New analysis from Frost & Sullivan (Mountain View, CA, USA), an international growth consultancy company, found that live cell imaging technologies will have a large number of niche applications in cancer research, cell biology, developmental biology, and neuroscience. Currently available technologies include live cell-based tests systems and molecular models including high-resolution imaging systems.

“The principal challenges to successful live cell imaging are microscopic settings optimization, fluorescent components selection, and culture environment maintenance,” said technical insights senior research analyst Cecilia Van Cauwenberghe. “Parallel advances in the field of cell culturing will also be critical to ensure accurate, real-time results.”

Utilizing live cell imaging along with fixed cell tests before the former totally replaces the latter, will lower costs and lessen throughput times. Equipment combining microscopes with cell culture incubators is already being marketed, facilitating affordable three-dimensional (3D), real-time assessment, multiplexing, and automation capabilities.

Tightly integrated systems can provide new benchmarks of precision and degrees of efficiency for the study of individual and small groups of live cells. They will enable innovative new ways for multiple cell analysis, simultaneous processing, and multi-day time lapse live cell imaging. However, it is essential that government patent systems protect these innovations, especially since new players in the market emerge from different start points. Similarly, measures must be taken to reduce uncertainty regarding reimbursements, and to establish frameworks assuring balance among tier I companies, small and medium enterprises, and start-ups developing innovative technologies.

“Intellectual property regimes promoting integration between academia and industry in order to deliver new solutions are necessary,” concluded Ms. Cauwenberghe. “Drug producers must collaborate with other stakeholders to translate live cell imaging innovations into clinically meaningful tests that can be used for diagnosis, prognosis and drug development.”

Related Links:

Frost & Sullivan


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Amoebiasis Test
ELI.H.A Amoeba
New
C-Reactive Protein Assay
OneStep C-Reactive Protein (CRP) RapiCard InstaTest

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: Karius Focus BAL is designed to quickly identify the etiology of lung infections and improve diagnostic yield over standard of care testing (Photo courtesy of Karius)

Microbial Cell-Free DNA Test Accurately Identifies Pathogens Causing Pneumonia and Other Lung Infections

Bronchoalveolar lavage (BAL) is a commonly used procedure for diagnosing lung infections, especially in immunocompromised patients. However, standard tests often fail to pinpoint the exact pathogen, leading... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more