Researchers Employ High-Energy X-Ray to Image Living Cancer Cells
|
By LabMedica International staff writers Posted on 13 Mar 2014 |

Image: X-ray scan of biologic cells: Each pixel represents a complete diffraction image. The color indicates how strong the X-rays are scattered at this local point (Photo courtesy of Britta Weinhausen, the University of Göttingen).
Scientists have performed the first studies of living biologic cells using high-energy X-rays. In the future, the new technique should make it possible to study unaltered living cells at high resolution.
“The new method for the first time enables us to investigate the internal structures of living cells in their natural environment using hard X-rays,” reported the researchers from the working group. “Thanks to the ever-greater resolution of the various investigative techniques, it is increasingly important to know whether the internal structure of the sample changes during sample preparation.” Scientists are working on the new research at the Deutsches Elektronen-Synchrotron DESY (Hamburg, Germany) PETRA III research light source. The new technology reveals distinct differences in the internal cellular structure between the living and dead, chemically fixed cells. “The new method for the first time enables us to investigate the internal structures of living cells in their natural environment using hard X-rays,” emphasized the leader of the working group, Prof. Sarah Köster from the Institute for X-Ray Physics of the University of Göttingen (Germany). The researchers published their findings on February 25, 2014, in the scientific journal Physical Review Letters.
Due to newly developed analytic methods with ever-higher resolution, scientists now can study biologic cells at the level of individual molecules. The cells are frequently chemically fixed before they are studied with the help of optical X-ray or electron microscopes. The process of chemical fixation involves immersing the cells in a type of chemical preservative that fixes all of the cell’s organelles and even the proteins in place. “Minor changes to the internal structure of the cells are unavoidable in this process,” stated Prof. Köster. “In our studies, we were able to show these changes in direct comparison for the first time.”
The scientists used cancer cells from the adrenal cortex for their study. They grew the cells on a silicon nitrite substrate, which is nearly transparent to X-rays. To keep the cells alive in the experimental chamber during the research, they were supplied with nutrients, and their metabolic products were driven away via fine channels only 0.5 mm in diameter. “The biological cells are thus located in a sample environment which very closely resembles their natural environment,” explained Dr. Britta Weinhausen from Prof. Köster’s group, the article’s first author.
The research was performed at the Nanofocus Setup (GINIX) of PETRA III’s experimental station P10. The scientists used the brilliant X-ray beam from PETRA III to scan the cells to gather data about their internal nanostructure. “Each frame was exposed for just 0.05 seconds, in order to avoid damaging the living cells too quickly,” clarified coauthor Dr. Michael Sprung from DESY. “Even nanometer-scale structures can be measured with the GINIX assembly, thanks to the combination of PETRA III’s high brilliance and the GINIX setup which is matched to the source.”
The researchers studied living and chemically fixed cells using this so-called nanodiffraction technique and compared the cells’ internal structures on the basis of the X-ray diffraction images. The results showed that the chemical fixation produces noticeable differences in the cellular structure on a scale of 30–50 nm.
“Thanks to the ever-greater resolution of the various investigative techniques, it is increasingly important to know whether the internal structure of the sample changes during sample preparation,” clarified Prof. Köster.
In the future, this new technology will make it possible to examine unchanged living cells at high resolution. Although other techniques have an even higher resolution than X-ray scattering, they require a chemical fixation or complex and invasive preparation of the cells. Lower-energy, so-called soft X-rays have already been used for studies of living cells. However, the study of structures with sizes as small as 12 nm first becomes possible through the analysis of diffraction images generated using hard X-rays.
Related Links:
Deutsches Elektronen-Synchrotron DESY
Institute for X-Ray Physics of the University of Göttingen
“The new method for the first time enables us to investigate the internal structures of living cells in their natural environment using hard X-rays,” reported the researchers from the working group. “Thanks to the ever-greater resolution of the various investigative techniques, it is increasingly important to know whether the internal structure of the sample changes during sample preparation.” Scientists are working on the new research at the Deutsches Elektronen-Synchrotron DESY (Hamburg, Germany) PETRA III research light source. The new technology reveals distinct differences in the internal cellular structure between the living and dead, chemically fixed cells. “The new method for the first time enables us to investigate the internal structures of living cells in their natural environment using hard X-rays,” emphasized the leader of the working group, Prof. Sarah Köster from the Institute for X-Ray Physics of the University of Göttingen (Germany). The researchers published their findings on February 25, 2014, in the scientific journal Physical Review Letters.
Due to newly developed analytic methods with ever-higher resolution, scientists now can study biologic cells at the level of individual molecules. The cells are frequently chemically fixed before they are studied with the help of optical X-ray or electron microscopes. The process of chemical fixation involves immersing the cells in a type of chemical preservative that fixes all of the cell’s organelles and even the proteins in place. “Minor changes to the internal structure of the cells are unavoidable in this process,” stated Prof. Köster. “In our studies, we were able to show these changes in direct comparison for the first time.”
The scientists used cancer cells from the adrenal cortex for their study. They grew the cells on a silicon nitrite substrate, which is nearly transparent to X-rays. To keep the cells alive in the experimental chamber during the research, they were supplied with nutrients, and their metabolic products were driven away via fine channels only 0.5 mm in diameter. “The biological cells are thus located in a sample environment which very closely resembles their natural environment,” explained Dr. Britta Weinhausen from Prof. Köster’s group, the article’s first author.
The research was performed at the Nanofocus Setup (GINIX) of PETRA III’s experimental station P10. The scientists used the brilliant X-ray beam from PETRA III to scan the cells to gather data about their internal nanostructure. “Each frame was exposed for just 0.05 seconds, in order to avoid damaging the living cells too quickly,” clarified coauthor Dr. Michael Sprung from DESY. “Even nanometer-scale structures can be measured with the GINIX assembly, thanks to the combination of PETRA III’s high brilliance and the GINIX setup which is matched to the source.”
The researchers studied living and chemically fixed cells using this so-called nanodiffraction technique and compared the cells’ internal structures on the basis of the X-ray diffraction images. The results showed that the chemical fixation produces noticeable differences in the cellular structure on a scale of 30–50 nm.
“Thanks to the ever-greater resolution of the various investigative techniques, it is increasingly important to know whether the internal structure of the sample changes during sample preparation,” clarified Prof. Köster.
In the future, this new technology will make it possible to examine unchanged living cells at high resolution. Although other techniques have an even higher resolution than X-ray scattering, they require a chemical fixation or complex and invasive preparation of the cells. Lower-energy, so-called soft X-rays have already been used for studies of living cells. However, the study of structures with sizes as small as 12 nm first becomes possible through the analysis of diffraction images generated using hard X-rays.
Related Links:
Deutsches Elektronen-Synchrotron DESY
Institute for X-Ray Physics of the University of Göttingen
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







