Nanoparticles Provide Optimal Gene Silencing, Potential for Liver Disease Treatment
|
By LabMedica International staff writers Posted on 19 Feb 2014 |

Image: MIT engineers designed nanoparticles that can deliver short strands of RNA (green) into cells (nuclei are stained blue) (Photo courtesy of Gaurav Sahay, Yizhou Dong, and Omid Veiseh).
Chemical engineers, inspired by tiny particles that carry cholesterol through the body, have designed nanoparticles that can deliver bits of genetic material that turn off disease-causing genes. This new application, known as RNA interference (RNAi), has the potential for treating cancer and other disorders. However, delivering enough RNA to treat the diseased tissue, while avoiding side effects in the rest of the body, has been complicated.
The new particles, developed at the Massachusetts Institute of Technology (MIT; Cambridge, MA, USA), which encase short strands of RNA within a sphere of proteins and fatty molecules, silence target genes in the liver more efficiently than any earlier delivery system, the researchers found in a study of mice. “What we’re excited about is how it only takes a very small amount of RNA to cause gene knockdown in the whole liver. The effect is specific to the liver—we get no effect in other tissues where you don’t want it,” stated Dr. Daniel Anderson, an associate professor of chemical engineering and a member of MIT’s Koch Institute for Integrative Cancer Research.
Dr. Anderson is senior author of an article describing the particles in the Proceedings of the National Academy of Sciences of the United States of America (PNAS) the week of February 10, 2014. Dr. Robert Langer, a Koch Institute professor at MIT, is also an author. The team of scientists, which included those from Alnylam Pharmaceuticals (Cambridge, MA, USA) additionally discovered that the nanoparticles could effectively silence genes in nonhuman primates. The technology has been licensed to a company for commercial development.
RNA interference is a naturally occurring process that scientists have been trying to manipulate since its discovery in 1998. Tiny pieces of RNA, called short interfering RNA (siRNA), switch off specific genes inside living cells by destroying the messenger RNA molecules that carry DNA’s instructions to the remainder of the cell.
Scientists hope this approach could offer new treatments for diseases caused by single mutations, such as cancer or Huntington’s disease, by blocking mutated genes that encourage cancerous behavior. However, developing RNAi therapies has proven challenging because it is difficult to deliver large quantities of siRNA to the right location without causing side effects in other tissues or organs.
Drs. Anderson and Langer, in earlier research, demonstrated they could block multiple genes with small doses of siRNA by wrapping the RNA in fatlike molecules called lipidoids. In their latest research, the researchers tried to improve upon these particles, making them more efficient, more selective, and safer, according to Yizhou Dong, a postdoc at the Koch Institute and lead author of the study. “We really wanted to develop materials for clinical use in the future,” he says. “That’s our ultimate goal for the material to achieve.”
The design stimulus for the new particles came from the natural world—in particular, small particles known as lipoproteins, which transport cholesterol and other fatty molecules throughout the body. Similar to lipoprotein nanoparticles, the MIT investigators’ new lipopeptide particles are spheres whose outer membranes are composed of long chains with a fatty lipid tail that faces into the particle. In the new particles, the head of the chain, which faces outward, is an amino acid. Strands of siRNA are carried inside the sphere, surrounded by more lipopeptide molecules. Molecules of cholesterol embedded in the membrane and an outer coating of the polymer PEG (polyethylene glycol) help to stabilize the structure.
The researchers adjusted the particles’ chemical properties, which determine their behavior, by varying the amino acids included in the particles. There are 21 amino acids found in multicellular organisms; the researchers created about 60 lipopeptide particles, each containing a different amino acid linked with one of three chemical groups: an aldehyde, an acrylate, or an epoxide. These groups also contribute to the particles’ behavior.
The researchers then assessed the particles’ ability to block the gene for a blood clotting protein known as factor VII, which is generated in the liver by cells called hepatocytes. Gauging factor VII levels in the bloodstream reveals how effective the siRNA silencing is. In that first screen, the most efficient particle contained the amino acid lysine linked to an epoxide, so the researchers created an additional 43 nanoparticles similar to that one, for further testing. The best of these compounds, known as cKK-E12, achieved gene silencing five times more efficiently than that achieved with any previous siRNA delivery vehicle.
In a separate experiment, the researchers delivered siRNA to block a tumor suppressor gene that is expressed in all body tissues. They found that siRNA delivery was very specific to the liver, which should minimize the risk of off-target side effects. “That’s important because we don’t want the material to silence all the targets in the human body,” Dr. Dong remarked. “If we want to treat patients with liver disease, we only want to silence targets in the liver, not other cell types.”
In nonhuman primate testing, the researchers revealed that the particles could effectively silence a gene called TTR (transthyretin), which has been implicated in diseases including senile systemic amyloidosis, familial amyloid polyneuropathy, and familial amyloid cardiomyopathy.
The MIT team is now trying to determine about how the particles behave and what occurs to them once they are injected, to further enhance the particles’ performance. They are also working on nanoparticles that target organs other than the liver, which is more problematic because the liver is a natural destination for foreign substances filtered out of the blood.
Related Links:
Massachusetts Institute of Technology
Alnylam Pharmaceuticals
The new particles, developed at the Massachusetts Institute of Technology (MIT; Cambridge, MA, USA), which encase short strands of RNA within a sphere of proteins and fatty molecules, silence target genes in the liver more efficiently than any earlier delivery system, the researchers found in a study of mice. “What we’re excited about is how it only takes a very small amount of RNA to cause gene knockdown in the whole liver. The effect is specific to the liver—we get no effect in other tissues where you don’t want it,” stated Dr. Daniel Anderson, an associate professor of chemical engineering and a member of MIT’s Koch Institute for Integrative Cancer Research.
Dr. Anderson is senior author of an article describing the particles in the Proceedings of the National Academy of Sciences of the United States of America (PNAS) the week of February 10, 2014. Dr. Robert Langer, a Koch Institute professor at MIT, is also an author. The team of scientists, which included those from Alnylam Pharmaceuticals (Cambridge, MA, USA) additionally discovered that the nanoparticles could effectively silence genes in nonhuman primates. The technology has been licensed to a company for commercial development.
RNA interference is a naturally occurring process that scientists have been trying to manipulate since its discovery in 1998. Tiny pieces of RNA, called short interfering RNA (siRNA), switch off specific genes inside living cells by destroying the messenger RNA molecules that carry DNA’s instructions to the remainder of the cell.
Scientists hope this approach could offer new treatments for diseases caused by single mutations, such as cancer or Huntington’s disease, by blocking mutated genes that encourage cancerous behavior. However, developing RNAi therapies has proven challenging because it is difficult to deliver large quantities of siRNA to the right location without causing side effects in other tissues or organs.
Drs. Anderson and Langer, in earlier research, demonstrated they could block multiple genes with small doses of siRNA by wrapping the RNA in fatlike molecules called lipidoids. In their latest research, the researchers tried to improve upon these particles, making them more efficient, more selective, and safer, according to Yizhou Dong, a postdoc at the Koch Institute and lead author of the study. “We really wanted to develop materials for clinical use in the future,” he says. “That’s our ultimate goal for the material to achieve.”
The design stimulus for the new particles came from the natural world—in particular, small particles known as lipoproteins, which transport cholesterol and other fatty molecules throughout the body. Similar to lipoprotein nanoparticles, the MIT investigators’ new lipopeptide particles are spheres whose outer membranes are composed of long chains with a fatty lipid tail that faces into the particle. In the new particles, the head of the chain, which faces outward, is an amino acid. Strands of siRNA are carried inside the sphere, surrounded by more lipopeptide molecules. Molecules of cholesterol embedded in the membrane and an outer coating of the polymer PEG (polyethylene glycol) help to stabilize the structure.
The researchers adjusted the particles’ chemical properties, which determine their behavior, by varying the amino acids included in the particles. There are 21 amino acids found in multicellular organisms; the researchers created about 60 lipopeptide particles, each containing a different amino acid linked with one of three chemical groups: an aldehyde, an acrylate, or an epoxide. These groups also contribute to the particles’ behavior.
The researchers then assessed the particles’ ability to block the gene for a blood clotting protein known as factor VII, which is generated in the liver by cells called hepatocytes. Gauging factor VII levels in the bloodstream reveals how effective the siRNA silencing is. In that first screen, the most efficient particle contained the amino acid lysine linked to an epoxide, so the researchers created an additional 43 nanoparticles similar to that one, for further testing. The best of these compounds, known as cKK-E12, achieved gene silencing five times more efficiently than that achieved with any previous siRNA delivery vehicle.
In a separate experiment, the researchers delivered siRNA to block a tumor suppressor gene that is expressed in all body tissues. They found that siRNA delivery was very specific to the liver, which should minimize the risk of off-target side effects. “That’s important because we don’t want the material to silence all the targets in the human body,” Dr. Dong remarked. “If we want to treat patients with liver disease, we only want to silence targets in the liver, not other cell types.”
In nonhuman primate testing, the researchers revealed that the particles could effectively silence a gene called TTR (transthyretin), which has been implicated in diseases including senile systemic amyloidosis, familial amyloid polyneuropathy, and familial amyloid cardiomyopathy.
The MIT team is now trying to determine about how the particles behave and what occurs to them once they are injected, to further enhance the particles’ performance. They are also working on nanoparticles that target organs other than the liver, which is more problematic because the liver is a natural destination for foreign substances filtered out of the blood.
Related Links:
Massachusetts Institute of Technology
Alnylam Pharmaceuticals
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







