Generation of New Bone Depends on WNT Stimulation of the mTORC1 Pathway
|
By LabMedica International staff writers Posted on 18 Feb 2014 |

Image: As seen through a microscope, the leg bone of a normal mouse (left) makes considerably less new bone than a mouse that produces high levels of a signaling protein, WNT7B, that stimulates new bone growth (shown in pink on the right). The protein could become a target for new drugs to treat osteoporosis and other conditions related to bone loss (Photo courtesy of Washington University School of Medicine).
The WNT signaling protein WNT7B potently enhances formation of new bone through activation of mTORC1 (mammalian target of rapamycin) in a mouse osteoporosis model.
Previous studies have implicated WNT signaling in both embryonic and postnatal bone formation. However, the pertinent WNT ligands and their downstream signaling mechanisms are not well understood.
Investigators at the Washington University School of Medicine (St. Louis, MO, USA) used several lines of genetically engineered mice to examine the role of WNT signaling in bone formation.
The WNT gene family consists of structurally related genes that encode secreted signaling proteins. These proteins have been implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during embryogenesis. The WNT pathway involves a large number of proteins that can regulate the production of WNT signaling molecules, their interactions with receptors on target cells, and the physiological responses of target cells that result from the exposure of cells to the extracellular WNT ligands. Although the presence and strength of any given effect depends on the WNT ligand, cell type, and organism, some components of the signaling pathway are remarkably conserved in a wide variety of organisms.
Results published in the January 30, 2014, online edition of the journal PLOS Genetics revealed that WNT7B protein increased bone mass by stimulating formation of bone-building osteoblast cells while having no effect on the activity of bone-degrading osteoclasts. At the molecular level, it was seen that WNT7B exerted its effects through activation of the mTORC1 pathway. MTORC1 is a serine/threonine protein kinase of the phosphatidylinositol 3-kinase (PI3K) protein family that regulates cell growth, proliferation, motility, survival, protein synthesis, and transcription.
Genetic disruption of mTORC1 signaling prevented the WNT7B-induced formation of high-bone-mass phenotype mice.
“We have been looking for new ways to stimulate bone formation,” said senior author Dr. Fanxin Long, professor of medicine and developmental biology at the Washington University School of Medicine. “The tools we already have are very good at slowing the breakdown of bone, but we need better ways to stimulate new bone growth. By analyzing that information, mTOR can determine whether a cell should go into a mode to make lots of stuff, like proteins or, in this case, new bone. Bone formation is an energetically expensive process, so it makes sense that some regulator would tell a cell whether there is sufficient energy and material to manufacture new bone. It is still early, but our finding seems to point out that activating the mTOR pathway may be a good way to stimulate bone growth. This is a new twist because much of the current focus in mTOR-related drug development has been on compounds that inhibit the pathway to shut down cancer cells.”
Patients, such as organ transplant recipients, who have been treated with immunosuppressive drugs that inhibit the mTOR pathway often present with bone problems. “Many develop bone problems within a few months of receiving transplants because of the heavy doses of immunosuppressors they receive,” said Dr. Long. “Scientists have not looked carefully at how drugs used to prevent organ rejection can have a detrimental effect on bone, but our study would suggest that if those drugs inhibit mTOR, they could disrupt bone formation.”
Related Links:
Washington University School of Medicine
Previous studies have implicated WNT signaling in both embryonic and postnatal bone formation. However, the pertinent WNT ligands and their downstream signaling mechanisms are not well understood.
Investigators at the Washington University School of Medicine (St. Louis, MO, USA) used several lines of genetically engineered mice to examine the role of WNT signaling in bone formation.
The WNT gene family consists of structurally related genes that encode secreted signaling proteins. These proteins have been implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during embryogenesis. The WNT pathway involves a large number of proteins that can regulate the production of WNT signaling molecules, their interactions with receptors on target cells, and the physiological responses of target cells that result from the exposure of cells to the extracellular WNT ligands. Although the presence and strength of any given effect depends on the WNT ligand, cell type, and organism, some components of the signaling pathway are remarkably conserved in a wide variety of organisms.
Results published in the January 30, 2014, online edition of the journal PLOS Genetics revealed that WNT7B protein increased bone mass by stimulating formation of bone-building osteoblast cells while having no effect on the activity of bone-degrading osteoclasts. At the molecular level, it was seen that WNT7B exerted its effects through activation of the mTORC1 pathway. MTORC1 is a serine/threonine protein kinase of the phosphatidylinositol 3-kinase (PI3K) protein family that regulates cell growth, proliferation, motility, survival, protein synthesis, and transcription.
Genetic disruption of mTORC1 signaling prevented the WNT7B-induced formation of high-bone-mass phenotype mice.
“We have been looking for new ways to stimulate bone formation,” said senior author Dr. Fanxin Long, professor of medicine and developmental biology at the Washington University School of Medicine. “The tools we already have are very good at slowing the breakdown of bone, but we need better ways to stimulate new bone growth. By analyzing that information, mTOR can determine whether a cell should go into a mode to make lots of stuff, like proteins or, in this case, new bone. Bone formation is an energetically expensive process, so it makes sense that some regulator would tell a cell whether there is sufficient energy and material to manufacture new bone. It is still early, but our finding seems to point out that activating the mTOR pathway may be a good way to stimulate bone growth. This is a new twist because much of the current focus in mTOR-related drug development has been on compounds that inhibit the pathway to shut down cancer cells.”
Patients, such as organ transplant recipients, who have been treated with immunosuppressive drugs that inhibit the mTOR pathway often present with bone problems. “Many develop bone problems within a few months of receiving transplants because of the heavy doses of immunosuppressors they receive,” said Dr. Long. “Scientists have not looked carefully at how drugs used to prevent organ rejection can have a detrimental effect on bone, but our study would suggest that if those drugs inhibit mTOR, they could disrupt bone formation.”
Related Links:
Washington University School of Medicine
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







