Sizeable Neanderthal Genome Still Exists in Modern Humans
|
By LabMedica International staff writers Posted on 18 Feb 2014 |

Image: A diorama at the Neanderthal museum in Croatia. A substantial fraction of the Neanderthal genome persists in modern human populations. A new approach applied to analyzing whole-genome sequencing data from 665 people from Europe and East Asia shows that more than 20% of the Neanderthal genome survives in the DNA of this contemporary group, whose genetic information is part of the 1000 Genomes Project (Photo courtesy of Max Planck Institute).
A substantial fraction of the Neanderthal genome has been found to persist in modern human populations. A new strategy for analyzing whole-genome sequencing data from 665 people from Europe and East Asia revealed that more than 20% of the Neanderthal genome survives in the DNA of this contemporary group.
The genetic data gathered are part of the 1000 Genomes Project (Bethesda, MD, USA). Significant amounts of population-level DNA sequences might be obtained from extinct groups even in the absence of fossilized remains, because these archaic sequences might have been inherited by other individuals from whom scientists can collect genomic data.
Earlier research suggests that someone of non-African descent may have inherited about 1%–3% of his/her genome from Neanderthal ancestors. These archaic DNA sequences can vary from one person to another and they were aggregated in the present study to determine the degree of the Neanderthal genome remaining in the study group as a whole. The findings are a beginning to identifying the location of specific pieces of Neanderthal DNA in modern humans and a beginning to creating a collection of Neanderthal lineages surviving in present-day human populations.
Scientists Drs. Benjamin Bernot and Joshua M. Akey, both population geneticists from the department of genome sciences, University of Washington (Seattle, USA), reported their findings January 29, 2014, in the journal Science Express. Dr. Vernot is a graduate student and Dr. Akey is an associate professor.
To verify the accuracy of their strategy, Dr. Vernot ran their analysis before comparing the suspected Neanderthal sequences they found in modern humans to the recently mapped Neanderthal genome obtained from DNA taken from bone. This genome came from the paleogenetics laboratory of Dr. Svante Paabo of the Max Planck Institute for Evolutionary Anthropology (Leipzig, Germany).
“We wanted to know how well our predictions matched the Neanderthal reference genome,” Dr. Akey said. “The analysis showed that, after more refinement of these methods, scientists might not need a reference genome from an archaic species to do this type of study.”
The new findings suggest that substantial amounts of population-level DNA sequences might be obtained from extinct groups even in the absence of fossilized remains, because these ancient sequences might have been inherited by other individuals from whom scientists can gather genomic data, according to Dr. Akey. Here, lies the potential to find and characterize earlier unknown archaic humans that bred with early humans.
“In the future, I think scientists will be able to identify DNA from other extinct hominin, just by analyzing modern human genomes,” Dr. Vernot stated. “From our end, this was an entirely computational project. I think it’s really interesting how careful application of the correct statistical and computational tools can uncover important aspects of health, biology, and human history. Of course, you need good data, too.”
Neanderthals became extinct about 30,000 years ago. The time they lived on Earth, and some of their geographic range, overlapped with humans who were anatomically similar. The two closely related groups mated and generating some fertile offspring, such that parts of Neanderthal DNA were passed along to the next generations. In a proposed model, this combination of DNA could have occurred both before and after the evolutionary divergence of non-African modern humans from a common ancestral population.
It did not necessarily take a lot of individual hybrid offspring to introduce Neanderthal genes into early human populations. Nevertheless, Dr. Akey noted that it is not known how many Neanderthal ancestors modern-day humans have had. However, past interactions between the groups, Dr. Akey noted, is possibly more complicated than earlier believed. “In addition, the analysis of surviving archaic lineages points to the possibility that there were fitness costs to the hybridization of Neanderthal and humans,” Dr. Akey said.
Dr. Vernot noted, “I think what was most surprising to me, is that we found evidence of selection. In 2013, I would have bet that a Neanderthal/human hybrid would have been as fit as a fully modern human. This was mostly because we haven't been separated from them that long, on an evolutionary scale.”
Nevertheless, the Neanderthals were also a probable source for at least a few genetic variations that were adaptive for their human descendants. Neanderthal DNA sequences were discovered in regions of the genome that have been associated with skin pigmentation regulation. The procurement of these variants by breeding with the Neanderthals may have been a fast way for humans to adapt to local conditions. “We found evidence that Neanderthal skin genes made Europeans and East Asians more evolutionarily fit,” Dr. Vernot said, “and that other Neanderthal genes were apparently incompatible with the rest of the modern human genome, and thus did not survive to present day human populations.”
The researchers discerned that specific chromosomes arms in humans are revealingly lacking in Neanderthal DNA sequences, perhaps due to disparities between the two species along specific portions of their genetic materials. They noticed, for instance, a strong depletion of Neanderthal DNA in a region of human genomes that contains a gene for a factor thought to play an important role in human speech and language.
According to the scientists, the “fossil-free” application of sequencing archaic genomes not only has potential in revealing aspects of the evolution of now-extinct ancient humans and their characteristic population genetics, it also might provide insights into how interbreeding influenced current patterns of human diversity. Moreover, these studies might also help researchers target in on genetic alterations not found in any other species, and determine if these changes helped bestow early people with uniquely human characteristics.
The goal of the 1000 Genomes Project is to find most genetic variants that have frequencies of at least 1% in the populations studied.
1000 Genomes Project
University of Washington
Max Planck Institute for Evolutionary Anthropology
Related Links:
The genetic data gathered are part of the 1000 Genomes Project (Bethesda, MD, USA). Significant amounts of population-level DNA sequences might be obtained from extinct groups even in the absence of fossilized remains, because these archaic sequences might have been inherited by other individuals from whom scientists can collect genomic data.
Earlier research suggests that someone of non-African descent may have inherited about 1%–3% of his/her genome from Neanderthal ancestors. These archaic DNA sequences can vary from one person to another and they were aggregated in the present study to determine the degree of the Neanderthal genome remaining in the study group as a whole. The findings are a beginning to identifying the location of specific pieces of Neanderthal DNA in modern humans and a beginning to creating a collection of Neanderthal lineages surviving in present-day human populations.
Scientists Drs. Benjamin Bernot and Joshua M. Akey, both population geneticists from the department of genome sciences, University of Washington (Seattle, USA), reported their findings January 29, 2014, in the journal Science Express. Dr. Vernot is a graduate student and Dr. Akey is an associate professor.
To verify the accuracy of their strategy, Dr. Vernot ran their analysis before comparing the suspected Neanderthal sequences they found in modern humans to the recently mapped Neanderthal genome obtained from DNA taken from bone. This genome came from the paleogenetics laboratory of Dr. Svante Paabo of the Max Planck Institute for Evolutionary Anthropology (Leipzig, Germany).
“We wanted to know how well our predictions matched the Neanderthal reference genome,” Dr. Akey said. “The analysis showed that, after more refinement of these methods, scientists might not need a reference genome from an archaic species to do this type of study.”
The new findings suggest that substantial amounts of population-level DNA sequences might be obtained from extinct groups even in the absence of fossilized remains, because these ancient sequences might have been inherited by other individuals from whom scientists can gather genomic data, according to Dr. Akey. Here, lies the potential to find and characterize earlier unknown archaic humans that bred with early humans.
“In the future, I think scientists will be able to identify DNA from other extinct hominin, just by analyzing modern human genomes,” Dr. Vernot stated. “From our end, this was an entirely computational project. I think it’s really interesting how careful application of the correct statistical and computational tools can uncover important aspects of health, biology, and human history. Of course, you need good data, too.”
Neanderthals became extinct about 30,000 years ago. The time they lived on Earth, and some of their geographic range, overlapped with humans who were anatomically similar. The two closely related groups mated and generating some fertile offspring, such that parts of Neanderthal DNA were passed along to the next generations. In a proposed model, this combination of DNA could have occurred both before and after the evolutionary divergence of non-African modern humans from a common ancestral population.
It did not necessarily take a lot of individual hybrid offspring to introduce Neanderthal genes into early human populations. Nevertheless, Dr. Akey noted that it is not known how many Neanderthal ancestors modern-day humans have had. However, past interactions between the groups, Dr. Akey noted, is possibly more complicated than earlier believed. “In addition, the analysis of surviving archaic lineages points to the possibility that there were fitness costs to the hybridization of Neanderthal and humans,” Dr. Akey said.
Dr. Vernot noted, “I think what was most surprising to me, is that we found evidence of selection. In 2013, I would have bet that a Neanderthal/human hybrid would have been as fit as a fully modern human. This was mostly because we haven't been separated from them that long, on an evolutionary scale.”
Nevertheless, the Neanderthals were also a probable source for at least a few genetic variations that were adaptive for their human descendants. Neanderthal DNA sequences were discovered in regions of the genome that have been associated with skin pigmentation regulation. The procurement of these variants by breeding with the Neanderthals may have been a fast way for humans to adapt to local conditions. “We found evidence that Neanderthal skin genes made Europeans and East Asians more evolutionarily fit,” Dr. Vernot said, “and that other Neanderthal genes were apparently incompatible with the rest of the modern human genome, and thus did not survive to present day human populations.”
The researchers discerned that specific chromosomes arms in humans are revealingly lacking in Neanderthal DNA sequences, perhaps due to disparities between the two species along specific portions of their genetic materials. They noticed, for instance, a strong depletion of Neanderthal DNA in a region of human genomes that contains a gene for a factor thought to play an important role in human speech and language.
According to the scientists, the “fossil-free” application of sequencing archaic genomes not only has potential in revealing aspects of the evolution of now-extinct ancient humans and their characteristic population genetics, it also might provide insights into how interbreeding influenced current patterns of human diversity. Moreover, these studies might also help researchers target in on genetic alterations not found in any other species, and determine if these changes helped bestow early people with uniquely human characteristics.
The goal of the 1000 Genomes Project is to find most genetic variants that have frequencies of at least 1% in the populations studied.
1000 Genomes Project
University of Washington
Max Planck Institute for Evolutionary Anthropology
Related Links:
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







