LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Nanorobots Designed for Drug Delivery

By LabMedica International staff writers
Posted on 16 Dec 2013
Image: The figure shows a nanocage in which eight unique DNA molecules are mixed together. The nanocage has four functional elements that transform themselves in response to changes in the surrounding temperature. These transformations either close (1A) or open (1B) the nanocage. By exploiting the temperature changes in the surroundings, the researchers trapped an active enzyme called horseradish peroxidase (HRP) in the nanocage (1C) (Photo courtesy of Sissel Juul).
Image: The figure shows a nanocage in which eight unique DNA molecules are mixed together. The nanocage has four functional elements that transform themselves in response to changes in the surrounding temperature. These transformations either close (1A) or open (1B) the nanocage. By exploiting the temperature changes in the surroundings, the researchers trapped an active enzyme called horseradish peroxidase (HRP) in the nanocage (1C) (Photo courtesy of Sissel Juul).
Initial phases of research have been started towards developing a nanorobot that in the long run will enable the targeted transport of pharmaceutical agents in the body.

In collaboration with American and Italian colleagues, researchers from Aarhus University (Aarhus, Denmark) have now taken a major move towards developing a nanorobot that will enable the targeted transport of medications in the body.

A nanorobot is a trendy term for molecules with a unique feature that enables them to be programmed to perform a specific task. In collaboration with colleagues in Italy and the United States, researchers at Aarhus University have now taken a major step towards building the first nanorobot of DNA molecules that can encapsulate and release active biomolecules.

The nanorobot (also known as a DNA nanocage) will eventually be used to transport drugs throughout the body and thereby have a targeted effect on diseased cells. Using DNA self-assembly, the researchers designed eight unique DNA molecules from the body’s own natural molecules. When these molecules are combined, they spontaneously aggregate in a usable form, the nanocage.

The nanocage has four functional components that transform themselves in response to changes in the surrounding temperature. These transformations either close or open the nanocage. By exploiting the temperature alterations in the environment, the researchers encapsulated an active enzyme called horseradish peroxidase (HRP) in the nanocage. They used HRP as a model because its activity is easy to trace.

This is possible because the nanocage’s outer lattice has apertures with a smaller diameter than the central spherical cavity. This structure makes it possible to encapsulate enzymes or other molecules that are larger than the apertures in the lattice, but smaller than the central cavity.

The researchers published their findings November 26, 2013, in the journal ACS Nano. The researchers demonstrated in their article how they could exploit temperature changes to open the nanocage and allow HRP to be encapsulated before it closes again. They also show that HRP retains its enzyme activity inside the nanocage and converts substrate molecules that are small enough to penetrate the nanocage to products inside.

The encapsulation of HRP in the nanocage is reversible, in such a way that the nanocage is capable of releasing the HRP once more in reaction to temperature changes. The researchers also show that the DNA nanocage with its enzyme load can be taken up by cells in culture. Looking towards the future, the idea behind this nanocage is expected to be used for drug delivery, i.e., as a means of transport for medicine that can target diseased cells in the body in order to achieve a more rapid and more beneficial effect.

The research was performed at the department of molecular biology and genetics and the Interdisciplinary Nanoscience Centre (iNANO) at Aaruhus, Aarhus University, in collaboration with researchers from Duke University (Durham, NC, USA) and the University of Rome (Italy).

Related Links:

Aarhus University
Duke University 
University of Rome


Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
ESR Analyzer
TEST1 2.0
Urine Chemistry Control
Dropper Urine Chemistry Control

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more