LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Increased Mitochondrial Superoxide Levels Diminish Symptoms of Diabetic Kidney Disease

By LabMedica International staff writers
Posted on 04 Nov 2013
Image: Transmission electron micrograph of a cell mitochondrion (Photo courtesy of Thomas Deerinck, National Center for Microscopy and Imaging Research, University of California, San Diego).
Image: Transmission electron micrograph of a cell mitochondrion (Photo courtesy of Thomas Deerinck, National Center for Microscopy and Imaging Research, University of California, San Diego).
In vivo studies carried out with chronically diabetic mice have demonstrated a sharp reduction in the production of superoxide anion in the kidney and have shown that restoration of superoxide production reversed most diabetes symptoms.

Models of impaired diabetic kidney function generally suggest that chronically high glucose levels stimulate mitochondria in cells to produce an overabundance of superoxide anion, a highly reactive, toxic species that ultimately leads to downstream cellular damage, organ dysfunction, and disease.

However, a paper published in the October 25, 2013, online edition of Journal of Clinical Investigation has proposed a radically different metabolic role for superoxide anions in diabetes.

Investigators at the University of California, San Diego (USA) worked with the steptozotocin-induced mouse model of type I diabetes. They assayed superoxide production in the kidneys of these animals using an in vivo real-time transcutaneous fluorescence method combined with confocal microscopy and electron paramagnetic resonance analysis.

Results showed that superoxide production was reduced in the kidneys of these animals. Furthermore, reduction of mitochondrial biogenesis and phosphorylation of pyruvate dehydrogenase (PDH) were observed in kidneys from diabetic mice. These observations were consistent with an overall reduction of mitochondrial glucose oxidation. Activity of AMPK (5' AMP-activated protein kinase), the major energy-sensing enzyme, was reduced in kidneys from both diabetic mice and humans.

Mitochondrial biogenesis, PDH activity, and mitochondrial complex activity were restored by treatment with the AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). AICAR treatment induced superoxide production and was linked with glomerular matrix and albuminuria reduction in the diabetic kidney.

These results demonstrated that diabetic kidneys had reduced superoxide and mitochondrial biogenesis, and that activation of AMPK enhanced superoxide production and mitochondrial function while reducing disease activity.

“Mitochondrial superoxide does not seem to be a causative factor of diabetic kidney disease,” said senior author Dr. Kumar Sharma, professor of medicine at the University of California, San Diego. “Indeed, when mitochondrial superoxide is increased with AMPK activation, there is reduced kidney disease, suggesting that improving mitochondrial function and superoxide production is actually beneficial for diabetic complications. This idea is a sea change in the field of diabetic complications. Methods will need to be developed to monitor mitochondrial function in animal models and in clinical trials. The study of metabolites may be of great value to monitor mitochondrial noninvasively. Other methods, such as novel imaging tools like the one described in our paper, will also be important to follow mitochondrial superoxide production. It is interesting to note that recent studies by other groups have suggested that stimulating mitochondrial superoxide production may actually increase longevity and contribute to the benefits of exercise.”

Related Links:

University of California, San Diego 


New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Genetic Type 1 Diabetes Risk Test
T1D GRS Array
Silver Member
PCR Plates
Diamond Shell PCR Plates

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more