Dual-Imaging Shows Internal Nanoscale Structure, Chemistry of Objects
|
By LabMedica International staff writers Posted on 15 Oct 2013 |

Image: Peering inside a catalyst: A new dual-method imaging technique allowed scientists to map the internal nanostructure of these cylindrical catalyst bodies nondestructively. The technique combines computed tomography (CT), which makes “slices” of the 3D structure (circles), with X-ray particle distribution functions (PDFs, shown as graphs), to plot information about the internal nanostructure and chemistry (colors), pixel-by-pixel in three dimensions. The PDFs for the two pixels shown indicate that there are large palladium nanoparticles at the edge of catalyst body, and small palladium nanoparticles in the center (represented as different-sized clusters). The powerful method reveals the structure at many length scales—from the millimeter-scale catalyst body, to the micron-scale arrangements of the nanoparticles, to the billionths-of-a-meter nanoparticles, all the way down to the atoms themselves (Photo courtesy of Brookhaven National Laboratory)
Nanomaterials comprised of particles with dimensions measured in billionths of a meter hold vast potential for creating more effective fuel cells, batteries, catalysts, and drug-delivery systems.
Seeing how nanostructured materials inside these devices evolve and interact as they operate is essential to gain clues into ways to optimize performance. However, most studies have looked at idealized samples of isolated components, not as they function in operating devices. A group of researchers at the US Department of Energy’s Brookhaven National Laboratory (Upton, NY, USA) and Columbia University’s (New York, NY, USA) School of Engineering and Applied Science has developed a new kind of “X-ray vision”—a way to peek inside actual devices to map the internal nanostructures and characteristics of the various components, and even track how properties evolve as the devices operate. The innovative dual imaging method described September 30, 2013, in the journal Nature Communications, combines high-intensity X-rays for discerning nanoscale structures with cross-sectional “slices” of the device to target the exact location of the nanostructured components. It creates new opportunities for developments in a wide range of research fields from materials science to biomaterials, geology, environmental science, and health.
“If you think of a battery with an anode, next to a membrane, next to a solid electrolyte, next to another membrane, next to the cathode, and all this wrapped in a steel container, it's pretty opaque from the outside,” said Dr. Simon Billinge, one of the paper’s lead authors and a researcher at both Brookhaven and Columbia Engineering. “What we can do now, with this new dual-imaging method, is look inside the battery and extract the nanostructure from each of those parts of the battery separately, and we can do it without taking the battery apart, and we can also do it while the battery is operating, to follow the chemistry as the materials evolve.”
The X-rays used for this technique are not like the ones used to image a broken bone. They are exquisitely intense, small beams with very high energy produced by a synchrotron light source, a precision scientific instrument located at select research centers around the world, including Brookhaven Lab and the European Synchrotron Radiation Facility (Grenoble, France), where this specific study was conducted. The X-rays generate measurements of the distribution of distances between pairs of atoms in the material, known as atomic pair distribution functions (PDFs), which reveal the nanoscale structure.
Larger scale cross-sectional images of slices of the material taken from multiple angles using computed tomography (CT)--similar to what clinicians use to identify brain injuries after a bad fall--give scientists the spatial data they need to make a three-dimensional (3D) map of the device’s material components and position the information about nanoscale structure on that map.
“Each method is powerful in its own right, but together they give us a whole new kind of picture,” Dr. Billinge said. “For the first time we can separate the nanostructure signals from the different parts of a working device and see what the atoms are doing in each place, without dismantling the object.”
Similar to the imaging methods that have had a huge impact in health care and the physiologic and neurologic sciences, this technique offers unprecedented access to the internal workings of materials at the nanoscale. To demonstrate the technique, the scientists constructed images of a complex phantom sample composed of a mixture of multiple amorphous and semi-crystalline compounds. They were able to tell these distinct phases apart with ease. Then they used the technique to examine the internal structure of a catalyst comprised of palladium nanoparticles on an aluminum oxide support that is widely used in the chemical industry.
“The efficiency of many industrial processes is dependent on the performance of catalysts deposited onto a structural support known as a catalytic body, so it’s extremely pertinent to understand how they are prepared and operate in practice,” Dr. Billinge said.
The technique clearly revealed a non-uniform distribution of particles, with larger particles on the surface and smaller ones on the inside of the material. “It is not clear from this study whether the significant catalytic activity would originate from the larger and more numerous particles located at the periphery, or by the smaller ones in the interior,” Dr. Billinge said. “But by using dynamic PDF-CT to monitor the catalyst as it performs, it is now possible to provide a more complete picture of the catalyst sample and the evolutionary processes by which it develops and operates to understand these relationships, and ultimately to guide improved catalyst design.”
This research was performed while Dr. Billinge was on sabbatical from Columbia and Brookhaven, but will likely continue at the US National Synchrotron Light Source II (NSLS-II) at Brookhaven, when it becomes operational in 2015. “With modern synchrotron light sources, sub-micron X-ray beams are becoming more widely available, allowing for the possibility of PDF-CT imaging with resolution on nanometer length-scales in the near future,” Dr. Billinge said.
Related Links:
Energy’s Brookhaven National Laboratory
Columbia University
Seeing how nanostructured materials inside these devices evolve and interact as they operate is essential to gain clues into ways to optimize performance. However, most studies have looked at idealized samples of isolated components, not as they function in operating devices. A group of researchers at the US Department of Energy’s Brookhaven National Laboratory (Upton, NY, USA) and Columbia University’s (New York, NY, USA) School of Engineering and Applied Science has developed a new kind of “X-ray vision”—a way to peek inside actual devices to map the internal nanostructures and characteristics of the various components, and even track how properties evolve as the devices operate. The innovative dual imaging method described September 30, 2013, in the journal Nature Communications, combines high-intensity X-rays for discerning nanoscale structures with cross-sectional “slices” of the device to target the exact location of the nanostructured components. It creates new opportunities for developments in a wide range of research fields from materials science to biomaterials, geology, environmental science, and health.
“If you think of a battery with an anode, next to a membrane, next to a solid electrolyte, next to another membrane, next to the cathode, and all this wrapped in a steel container, it's pretty opaque from the outside,” said Dr. Simon Billinge, one of the paper’s lead authors and a researcher at both Brookhaven and Columbia Engineering. “What we can do now, with this new dual-imaging method, is look inside the battery and extract the nanostructure from each of those parts of the battery separately, and we can do it without taking the battery apart, and we can also do it while the battery is operating, to follow the chemistry as the materials evolve.”
The X-rays used for this technique are not like the ones used to image a broken bone. They are exquisitely intense, small beams with very high energy produced by a synchrotron light source, a precision scientific instrument located at select research centers around the world, including Brookhaven Lab and the European Synchrotron Radiation Facility (Grenoble, France), where this specific study was conducted. The X-rays generate measurements of the distribution of distances between pairs of atoms in the material, known as atomic pair distribution functions (PDFs), which reveal the nanoscale structure.
Larger scale cross-sectional images of slices of the material taken from multiple angles using computed tomography (CT)--similar to what clinicians use to identify brain injuries after a bad fall--give scientists the spatial data they need to make a three-dimensional (3D) map of the device’s material components and position the information about nanoscale structure on that map.
“Each method is powerful in its own right, but together they give us a whole new kind of picture,” Dr. Billinge said. “For the first time we can separate the nanostructure signals from the different parts of a working device and see what the atoms are doing in each place, without dismantling the object.”
Similar to the imaging methods that have had a huge impact in health care and the physiologic and neurologic sciences, this technique offers unprecedented access to the internal workings of materials at the nanoscale. To demonstrate the technique, the scientists constructed images of a complex phantom sample composed of a mixture of multiple amorphous and semi-crystalline compounds. They were able to tell these distinct phases apart with ease. Then they used the technique to examine the internal structure of a catalyst comprised of palladium nanoparticles on an aluminum oxide support that is widely used in the chemical industry.
“The efficiency of many industrial processes is dependent on the performance of catalysts deposited onto a structural support known as a catalytic body, so it’s extremely pertinent to understand how they are prepared and operate in practice,” Dr. Billinge said.
The technique clearly revealed a non-uniform distribution of particles, with larger particles on the surface and smaller ones on the inside of the material. “It is not clear from this study whether the significant catalytic activity would originate from the larger and more numerous particles located at the periphery, or by the smaller ones in the interior,” Dr. Billinge said. “But by using dynamic PDF-CT to monitor the catalyst as it performs, it is now possible to provide a more complete picture of the catalyst sample and the evolutionary processes by which it develops and operates to understand these relationships, and ultimately to guide improved catalyst design.”
This research was performed while Dr. Billinge was on sabbatical from Columbia and Brookhaven, but will likely continue at the US National Synchrotron Light Source II (NSLS-II) at Brookhaven, when it becomes operational in 2015. “With modern synchrotron light sources, sub-micron X-ray beams are becoming more widely available, allowing for the possibility of PDF-CT imaging with resolution on nanometer length-scales in the near future,” Dr. Billinge said.
Related Links:
Energy’s Brookhaven National Laboratory
Columbia University
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







