Mouse Lifespan Increased 20% by Single Gene Alteration
By LabMedica International staff writers Posted on 19 Sep 2013 |

Image: By lowering the expression of a single gene, called mTOR, scientists have extended the average lifespan of a group of mice by about 20% (Photo courtesy of the US National Institutes of Health’s (NIH) National Heart, Lung, and Blood Institute (NHLBI)).
By lowering the expression of a single gene, US researchers have extended the average lifespan of a group of lab mice by about 20%—the equivalent of raising the average human lifespan by 16 years, from 79 to 95.
The researchers targeted a gene called mTOR, which is involved in metabolism and energy balance, and may be connected with the increased lifespan associated with caloric restriction.
A detailed study of these mice, published in the August 29, 2013, of the journal Cell Reports, revealed that gene-influenced lifespan extension did not affect every organ and tissue in the same manner. For example, the mice retained better memory and balance as they aged, but their bones deteriorated more rapidly than normal.
“While the high extension in lifespan is noteworthy, this study reinforces an important facet of aging; it is not uniform,” said lead researcher Toren Finkel, MD, PhD, at the US National Institutes of Health’s (NIH) National Heart, Lung, and Blood Institute (NHLBI; Bethesda, MD, USA). “Rather, similar to circadian rhythms, an animal might have several organ-specific aging clocks that generally work together to govern the aging of the whole organism.”
Dr. Finkel, who heads the NHLBI’s Laboratory of Molecular Biology in the Division of Intramural Research, noted that these findings may help guide therapies for aging-related diseases that target specific organs, such as Alzheimer’s disease. However, additional research in these mice as well as human cells are required to figure out precisely how aging in these diverse tissues is linked at the molecular level.
The researchers modified mice that make approximately 25% of the normal amount of the mTOR protein, or about the minimum needed for survival. The engineered mTOR mice were a little smaller than average, but they otherwise appeared normal. The median lifespan for the mTOR mice was 28.0 months for males and 31.5 months for females, compared to 22.9 months and 26.5 months for normal males and females, respectively. The mTOR mice also had a longer maximal lifespan; seven of the eight longest-lived mice in this study were mTOR mice. This lifespan increase is one of the largest observed in mice up to now.
Whereas the genetically modified mTOR mice aged better overall, they revealed only selective improvement in specific organs. They typically outperformed normal mice of same age in maze and balance tests, indicating better retention of memory and coordination. Older mTOR mice also retained more muscle strength and posture. However, mTOR mice had more loss of bone volume as they aged, and they were more prone to infections at old age, suggesting a reduction of immune function.
Related Links:
US National Heart, Lung, and Blood Institute
The researchers targeted a gene called mTOR, which is involved in metabolism and energy balance, and may be connected with the increased lifespan associated with caloric restriction.
A detailed study of these mice, published in the August 29, 2013, of the journal Cell Reports, revealed that gene-influenced lifespan extension did not affect every organ and tissue in the same manner. For example, the mice retained better memory and balance as they aged, but their bones deteriorated more rapidly than normal.
“While the high extension in lifespan is noteworthy, this study reinforces an important facet of aging; it is not uniform,” said lead researcher Toren Finkel, MD, PhD, at the US National Institutes of Health’s (NIH) National Heart, Lung, and Blood Institute (NHLBI; Bethesda, MD, USA). “Rather, similar to circadian rhythms, an animal might have several organ-specific aging clocks that generally work together to govern the aging of the whole organism.”
Dr. Finkel, who heads the NHLBI’s Laboratory of Molecular Biology in the Division of Intramural Research, noted that these findings may help guide therapies for aging-related diseases that target specific organs, such as Alzheimer’s disease. However, additional research in these mice as well as human cells are required to figure out precisely how aging in these diverse tissues is linked at the molecular level.
The researchers modified mice that make approximately 25% of the normal amount of the mTOR protein, or about the minimum needed for survival. The engineered mTOR mice were a little smaller than average, but they otherwise appeared normal. The median lifespan for the mTOR mice was 28.0 months for males and 31.5 months for females, compared to 22.9 months and 26.5 months for normal males and females, respectively. The mTOR mice also had a longer maximal lifespan; seven of the eight longest-lived mice in this study were mTOR mice. This lifespan increase is one of the largest observed in mice up to now.
Whereas the genetically modified mTOR mice aged better overall, they revealed only selective improvement in specific organs. They typically outperformed normal mice of same age in maze and balance tests, indicating better retention of memory and coordination. Older mTOR mice also retained more muscle strength and posture. However, mTOR mice had more loss of bone volume as they aged, and they were more prone to infections at old age, suggesting a reduction of immune function.
Related Links:
US National Heart, Lung, and Blood Institute
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
AI-Powered Blood Test Accurately Detects Ovarian Cancer
Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more
Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
Current circulating cell-free DNA (cfDNA) assays are typically centralized, requiring specialized handling and transportation of samples. Introducing a flexible, decentralized sequencing system at the... Read moreMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read moreMolecular Diagnostics
view channel
POC Diagnostic Platform Combines Immunoassay and Molecular Testing
An innovative diagnostic platform offers superior sensitivity across all sample types, including blood, compared to existing rapid tests, while maintaining a low-cost, user-friendly design.... Read more
Single Blood Test Could Detect Different Types of Cancer at Early Stages
Currently, reliable screening for only a few types of cancer is available, such as those affecting the breast, bowel, cervix (neck of the womb), and lung for individuals at high risk. While these screenings... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Blood Test Detects Up to Five Infectious Diseases at POC
Researchers have developed a prototype flow-through assay capable of detecting up to five different infections, with results that can be quickly analyzed and transmitted via a specialized smartphone app.... Read more
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Qiagen Acquires NGS Analysis Software Company Genoox
QIAGEN (Venlo, the Netherlands) has signed a definitive agreement to acquire Genoox (Tel Aviv, Israel), a provider of artificial intelligence (AI)-powered software that enables clinical labs to scale and... Read more
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more