Molecular Robots Help Build More Customized Drugs for Cancer, Arthritis Therapy
|
By LabMedica International staff writers Posted on 15 Aug 2013 |

Image: HSS scientists are developing more targeted drugs for disease such as cancer by using molecular “robots” to target more specific populations of cells (Photo courtesy of Hospital for Special Surgery).
Many pharmaceutical agents designed to fight for cancer or autoimmune diseases have unpleasant side effects because while they kill disease-causing cells, they also affect the healthy ones. Now, a new study has demonstrated an approach for developing more targeted drugs, by using molecular “robots” to target more specific populations of cells.
“This is a proof of concept study using human cells,” said Sergei Rudchenko, PhD, director of flow cytometry at Hospital for Special Surgery (HSS; New York, NY, USA), and a senior author of the study. “The next step is to conduct tests in a mouse model of leukemia.” The study’s findings, a collaboration between researchers from HSS and Columbia University (New York, NY, USA) was published online July 2013 on the website of the journal Nature Nanotechnology.
When antibodies or drugs bind to a receptor, a cell is triggered to perform a certain function or behave in a specific way. Drugs can target disease-causing cells by binding to a receptor, but in some cases, disease-causing cells do not have distinctive receptors and therefore drugs also bind to healthy cells and cause “off-target” side effects.
For instance, Rituximab (Rituxan, developed by Genentech, South San Francisco, CA, USA) is used to treat rheumatoid non-Hodgkin’s lymphoma, arthritis, and chronic lymphocytic leukemia by binding to CD20 receptors of abnormal cells that are causing the diseases. However, specific immune cells also have CD20 receptors and then the agent can disrupt an individual’s ability to initiate a fight against infection.
In the new study, scientists have designed molecular robots that can detect numerous receptors on cell surfaces, thereby effectively labeling more specific subpopulations of cells. Called molecular automata, the molecular robots, are made up of an amalgam of antibodies and short strands of DNA. These short DNA strands, called oligonucleotides, can be generated by researchers in a laboratory with any user-specified sequence.
The researchers conducted their experiments using white blood cells. All white blood cells have CD45 receptors, but only subsets have other receptors such as CD20, CD3, and CD8. In one experiment, HSS researchers created three different molecular robots. Each one had an antibody component of CD45, CD3, or CD8 and a DNA component. The DNA components of the robots were created to have a high affinity to the DNA components of another robot. DNA can be thought of as a double stranded helix that contains two strands of coded letters, and certain strands have a higher affinity to particular strands than others.
The researchers mixed human blood from healthy donors with their molecular robots. When a molecular robot carrying a CD45 antibody latched on to a CD45 receptor of a cell and a molecular robot carrying a CD3 antibody attached to a different welcoming receptor of the same cell, the close proximity of the DNA strands from the two robots triggered a cascade reaction, where certain strands were ripped apart and more complementary strands joined together. The result was a unique, single strand of DNA that was displayed only on a cell that had these two receptors.
The addition of a molecular robot carrying a CD8 antibody docking on a cell that expressed CD45, CD3, and CD8 caused this strand to grow. The researchers also demonstrated that the strand could be programmed to fluoresce when exposed to a solution. In essence, the robots can label a subpopulation of cells allowing for more targeted therapy. The researchers reported that the use of increasing numbers of molecular robots will allow researchers to narrow in on more specific subsets of cell populations. In computer programming language, the molecular robots are performing what is known as an “if yes, then proceed to X function.”
“The automata trigger the growth of more strongly complementary oligonucleotides. The reactions occur fast. In about 15 minutes, we can label cells,” said Maria Rudchenko, MS, the first author of the paper and a research associate at Hospital for Special Surgery. In terms of clinical applications, researchers could label either cells that they want to target or cells they want to avoid. “This is a proof of concept study that it works in human whole blood,” said Dr. Rudchenko. “The next step is to test it in animals.”
If molecular robots are successful in experiments with mice and ultimately human clinical trials, the researchers noted that there is a wide range of potential clinical applications. For example, cancer patients could benefit from more targeted chemotherapeutics. Drugs for autoimmune diseases could be more specifically personalized to impact disease-causing autoimmune cells and not the immune cells that are needed to fight infection, according to the scientists.
Related Links:
Hospital for Special Surgery
Columbia University
“This is a proof of concept study using human cells,” said Sergei Rudchenko, PhD, director of flow cytometry at Hospital for Special Surgery (HSS; New York, NY, USA), and a senior author of the study. “The next step is to conduct tests in a mouse model of leukemia.” The study’s findings, a collaboration between researchers from HSS and Columbia University (New York, NY, USA) was published online July 2013 on the website of the journal Nature Nanotechnology.
When antibodies or drugs bind to a receptor, a cell is triggered to perform a certain function or behave in a specific way. Drugs can target disease-causing cells by binding to a receptor, but in some cases, disease-causing cells do not have distinctive receptors and therefore drugs also bind to healthy cells and cause “off-target” side effects.
For instance, Rituximab (Rituxan, developed by Genentech, South San Francisco, CA, USA) is used to treat rheumatoid non-Hodgkin’s lymphoma, arthritis, and chronic lymphocytic leukemia by binding to CD20 receptors of abnormal cells that are causing the diseases. However, specific immune cells also have CD20 receptors and then the agent can disrupt an individual’s ability to initiate a fight against infection.
In the new study, scientists have designed molecular robots that can detect numerous receptors on cell surfaces, thereby effectively labeling more specific subpopulations of cells. Called molecular automata, the molecular robots, are made up of an amalgam of antibodies and short strands of DNA. These short DNA strands, called oligonucleotides, can be generated by researchers in a laboratory with any user-specified sequence.
The researchers conducted their experiments using white blood cells. All white blood cells have CD45 receptors, but only subsets have other receptors such as CD20, CD3, and CD8. In one experiment, HSS researchers created three different molecular robots. Each one had an antibody component of CD45, CD3, or CD8 and a DNA component. The DNA components of the robots were created to have a high affinity to the DNA components of another robot. DNA can be thought of as a double stranded helix that contains two strands of coded letters, and certain strands have a higher affinity to particular strands than others.
The researchers mixed human blood from healthy donors with their molecular robots. When a molecular robot carrying a CD45 antibody latched on to a CD45 receptor of a cell and a molecular robot carrying a CD3 antibody attached to a different welcoming receptor of the same cell, the close proximity of the DNA strands from the two robots triggered a cascade reaction, where certain strands were ripped apart and more complementary strands joined together. The result was a unique, single strand of DNA that was displayed only on a cell that had these two receptors.
The addition of a molecular robot carrying a CD8 antibody docking on a cell that expressed CD45, CD3, and CD8 caused this strand to grow. The researchers also demonstrated that the strand could be programmed to fluoresce when exposed to a solution. In essence, the robots can label a subpopulation of cells allowing for more targeted therapy. The researchers reported that the use of increasing numbers of molecular robots will allow researchers to narrow in on more specific subsets of cell populations. In computer programming language, the molecular robots are performing what is known as an “if yes, then proceed to X function.”
“The automata trigger the growth of more strongly complementary oligonucleotides. The reactions occur fast. In about 15 minutes, we can label cells,” said Maria Rudchenko, MS, the first author of the paper and a research associate at Hospital for Special Surgery. In terms of clinical applications, researchers could label either cells that they want to target or cells they want to avoid. “This is a proof of concept study that it works in human whole blood,” said Dr. Rudchenko. “The next step is to test it in animals.”
If molecular robots are successful in experiments with mice and ultimately human clinical trials, the researchers noted that there is a wide range of potential clinical applications. For example, cancer patients could benefit from more targeted chemotherapeutics. Drugs for autoimmune diseases could be more specifically personalized to impact disease-causing autoimmune cells and not the immune cells that are needed to fight infection, according to the scientists.
Related Links:
Hospital for Special Surgery
Columbia University
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







