LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Macrophages Expressing a Modified Human Sodium Channel Protein Prevent or Reverse Multiple Sclerosis in a Mouse Model

By LabMedica International staff writers
Posted on 14 Jun 2013
Genetically engineered mouse macrophages expressing the human gene (SCN5A) that encodes the NaVI.5 (sodium channel, voltage-gated, type V, alpha subunit) sodium channel protein were used to demonstrate the potential use of these modified immune cells for the treatment of muscular sclerosis (MS).

NaVI.5 is an integral membrane protein and tetrodotoxin-resistant voltage-gated sodium channel subunit. This protein is found primarily in cardiac muscle and is responsible for the initial upstroke of the action potential in an electrocardiogram.

Investigators at the University of Wisconsin (Madison, USA) had shown previously that a splice variant of NaV1.5 was expressed intracellularly in human – but not mouse - macrophages, and that it regulated cellular signaling. The lack of this channel protein in mouse macrophages made it very difficult to study.

To counter this problem the investigators developed a novel transgenic mouse model (C57BL6c-fms-hSCN5A), in which the human macrophage NaV1.5 splice variant was expressed in vivo in mouse macrophages. They used these modified macrophages in studies carried out on mice with experimental autoimmune encephalomyelitis—a syndrome that closely mimics human muscular sclerosis.

Results published in the June 2013 issue of the Journal of Neuropathology and Experimental Neurology revealed that the mice expressing human NaV1.5 were protected from experimental autoimmune encephalomyelitis. The modified macrophages sought out the lesions caused by the disease and promoted recovery.

Mice with experimental autoimmune encephalomyelitis that lacked human NaV1.5 macrophages displayed symptoms of a chronic disease, which progressed from weakness of the back and front limbs to complete paralysis of the hind limbs. When macrophages expressing human NaV1.5 were transplanted into these mice, the animals regained the ability to walk. Mice treated with a placebo solution or normal mouse macrophages did not show any signs of recovery or became progressively more ill.

"This finding was unexpected because we were not sure how much damage they would do, versus how much cleaning up they would do,'' said senior author Dr. Michael Carrithers, assistant professor of neurology at the University of Wisconsin. "Some people thought the mice would get more ill, but we found that it protected them and they either had no disease or a very mild case."

The question remains as to why human NaV1.5 macrophages fail to protect humans from MS. "Why are these repair mechanisms deficient in patients with MS and what can we do to enhance them?'' asked Dr. Carrithers. "The long-range goal is to develop the NaV1.5 enhanced macrophages as a treatment for people with MS."


Related Links:

University of Wisconsin


Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hematology Analyzer
Medonic M32B
Human Estradiol Assay
Human Estradiol CLIA Kit

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more