LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Human Stem Cell Graft Stimulates Neuron Regeneration in Rats with Spinal Injury

By LabMedica International staff writers
Posted on 06 Jun 2013
Image: A three-dimensional, reconstructed magnetic resonance image (upper) shows a cavity caused by a spinal injury nearly filled with grafted neural stem cells, colored green. The lower image depicts neuronal outgrowth from transplanted human neurons (green) and development of putative contacts (yellow dots) with host neurons (blue) (Photo courtesy of the University of California, San Diego School of Medicine).
Image: A three-dimensional, reconstructed magnetic resonance image (upper) shows a cavity caused by a spinal injury nearly filled with grafted neural stem cells, colored green. The lower image depicts neuronal outgrowth from transplanted human neurons (green) and development of putative contacts (yellow dots) with host neurons (blue) (Photo courtesy of the University of California, San Diego School of Medicine).
Image: Senior author Dr. Martin Marsala (Photo courtesy of the University of California, San Diego School of Medicine).
Image: Senior author Dr. Martin Marsala (Photo courtesy of the University of California, San Diego School of Medicine).
Human neural stem cells injected into rats with acute spinal cord injury generated connections between the injected stem cells and surviving host neurons, which stimulated host neuron regeneration and partially replaced the neurons destroyed by the injury.

Investigators at the University of California, San Diego School of Medicine (USA) worked with a model system comprising three-month-old female Sprague-Dawley rats with induced spinal compression injury. Three days postinjury, the animals were randomized and some received intraspinal injections of either human fetal spinal cord-derived neural stem cells (HSSC) or media-only, or did not receive an injection. All animals were immunosuppressed from the day of cell grafting and survived for eight weeks.

Results published in the May 28, 2013, online edition of the journal Stem Cell Research & Therapy revealed that the intraspinal grafting of HSSC in the injured animals led to a progressive and significant improvement in lower extremity paw placement, amelioration of spasticity, and normalization in thermal and tactile pain/escape thresholds at eight weeks post-grafting. Magnetic resonance imaging volume reconstruction and immunofluorescence analysis of grafted cell survival showed near complete injury-cavity-filling by grafted cells and development of putative synapses between grafted and host neurons.

Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hematology Analyzer
Medonic M32B
Clinical Chemistry System
P780

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more