LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

A Mitochondrial Transport Protein Protects Cancer Cells from Toxic Nanoparticles

By LabMedica International staff writers
Posted on 06 Jun 2013
Image: Senior author Dr. Priyabrata Mukherjee (Photo courtesy of the Mayo Clinic).
Image: Senior author Dr. Priyabrata Mukherjee (Photo courtesy of the Mayo Clinic).
A recent paper stressed the importance of linking the use of anticancer nanoparticle drugs and drug carriers to a basic understanding of the role of the mitochondria in the apoptotic process.

Cancer cells are surprisingly resistant to toxic effects of positively charged gold nanoparticles (+AuNPs). Investigators at the Mayo Clinic (Rochester, MN, USA) examined the interaction of +AuNPs with ovarian cancer cells growing in culture in order to determine the molecular mechanism protecting the cancer cells from the nanoparticles.

They reported in the April 24, 2013, online edition of the Journal of Biological Chemistry that the protein MICU1, a mitochondrial calcium uniporter, as a key molecule conferring cancer cells with resistance to +AuNPs. A uniporter is an integral membrane protein, either a channel or a carrier protein that is involved in facilitated diffusion. Uniporter carrier proteins work by binding to one molecule of solute at a time and transporting it with the solute gradient.

The MICU1 (mitochondrial calcium uptake 1) gene encodes an essential regulator of mitochondrial Ca2+ uptake under basal conditions. The encoded protein interacts with the mitochondrial calcium uniporter, a mitochondrial inner membrane Ca2+ channel, and is essential in preventing mitochondrial Ca2+ overload, which can cause excessive production of reactive oxygen species and cell stress.

The investigators found that in the ovarian cancer cells the increase in cytosolic Ca2+ induced by +AuNPs was balanced by MICU1, which prevented cell death. Silencing MICU1 decreased Bcl-2 (B-cell lymphoma 2), expression and increased caspase-3 activity and cytosolic cytochrome C levels—effects further enhanced in the presence of +AuNPs—thus initiating the mitochondrial pathway for apoptosis.

"This study identifies a novel mechanism that protects ovarian cancer cells by preventing the cell death, or apoptosis, which should occur when they encounter positively charged nanoparticles," said senior author Dr. Priyabrata Mukherjee, associate professor of biomedical engineering at the Mayo Clinic. "Furthermore, this work establishes MICU1 as a novel regulator of the apoptotic machinery in cancer cells and emphasizes the need to synergize nanoparticle design with understanding of mitochondrial machinery for enhancing targeted cellular toxicity."


Related Links:

Mayo Clinic


Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
Automatic CLIA Analyzer
Shine i9000

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more