LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Control of Neuropathic Pain Depends on a Schwann Cell Protein

By LabMedica International staff writers
Posted on 09 Apr 2013
Image:  Schwann cells (colored purple) forming myelin sheathes (green) around axons (brown) (photo courtesy of David Furness, Wellcome Images).
Image: Schwann cells (colored purple) forming myelin sheathes (green) around axons (brown) (photo courtesy of David Furness, Wellcome Images).
Pain researchers have found that a protein produced by Schwann cells plays a critical role in controlling allodynia (painful response to a stimulus that does not normally elicit pain) and in regulating the recovery of peripheral nerves after injury.

Schwann cells are involved in many important aspects of peripheral nerve biology such as the conduction of nervous impulses along axons, nerve development and regeneration, trophic support for neurons, production of the nerve extracellular matrix, modulation of neuromuscular synaptic activity, and presentation of antigens to T-lymphocytes.

Investigators at the University of California, San Diego (UCSD; USA) recently linked the protein LRP1 (LDL receptor-related protein-1) produced by Schwann cells to the neuropathic pain that occurs when peripheral nerve fibers are damaged or become dysfunctional. LRP1 is an endocytic receptor involved in several cellular processes, including intracellular signaling, lipid homeostasis, and clearance of apoptotic cells. In addition, the encoded protein is necessary for the clearance of secreted amyloid precursor protein and beta-amyloid, the main component of amyloid plaques found in Alzheimer's disease patients. Expression of the LRP1 gene decreases with age and has been found to be lower than controls in brain tissue from Alzheimer patients.

For this study, the investigators genetically engineered a line of mice lacking the gene for production of LRP1. They reported in the March 27, 2013, issue of the Journal of Neuroscience that these mice had abnormalities in axon myelination and in ensheathment of axons by nonmyelinating Schwann cells in Remak bundles (multiple nonmyelinated pain transmitting axons grouped together by Schwann cells). Remyelinated axons were evident 20 days after crush injury in control mice, yet were largely absent in mice lacking the LRP1 gene. In the partial nerve ligation model, mice without LRP1 demonstrated significantly increased and sustained mechanical allodynia and loss of motor function.

These studies identified LRP1 as an essential mediator of normal Schwann cell activity and as a pivotal regulator of the Schwann cell response to peripheral nervous system injury in vivo. "LRP1 helps mediate normal interactions between Schwann cells and axons and, when peripheral nerves have been injured, plays a critical role in regulating the steps that lead to eventual nerve regeneration," said senior author Dr. Wendy Campana, associate professor of anesthesiology at the University of California, San Diego. "When LRP1 is deficient, defects and problems become worse. They may go from acute to chronic, with increasing levels of pain."

The investigators are working to develop small molecule drugs to mimic LRP1 binding to receptors in Schwann cells to improve their health and ability to repair damaged nerve cells. "By targeting Schwann cells and LRP1, I think we can improve cells' response to injury, including reducing or eliminating chronic neuropathic pain," said Dr. Campana.

Related Links:

University of California, San Diego


Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Sample Transportation System
Tempus1800 Necto

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more