Key Collaboration Initiated for Optimization of Bioinformatics Computing Performance
|
By LabMedica International staff writers Posted on 03 Apr 2013 |
A new consortium has been formed for research and development of IT solutions to optimize computing for the analysis and management of macro-datasets generated from genomics research, as well as to facilitate clinical applications based on these datasets.
The huge sets of data produced in genomics studies, typically with Next Generation Sequencing technology, are processed by high performance computers and office workstations, and more recently by mobile devices like tablets and smartphones. The sequence of only a single human genome, for example, requires about 3 gigabytes of storage. New methods are required to process these data quickly and efficiently and to better enable their subsequent application.
Integromics (Granada, Spain) has announced that it will invest in the optimization of computing performance for bioinformatics applications, with a special focus on clinical applications, by participating in a European project named “Mr. SymBioMath” that includes renowned high performance computing (HPC) experts. The project, funded with more than EUR 2.6 million by the Seventh Framework Program for R & D of the European Union and coordinated by the Laboratory of Bioinformatics and Information Technology of the University of Malaga-UMA (Spain), has been designed to provide solutions to these needs through synergy between Integromics (Spain), the Leibniz Supercomputing Centre in Munich-LRZ (Germany), the Johannes Kepler University of Linz-JKU (Austria), RISC Software (Austria), and Carlos Haya Hospital (Spain).
The Mr. SymBioMath project is to result in new software applications and data analysis methods to accelerate genomics adoption in the clinical domain. At the level of computation, the research will be focused on two major challenges: transmission of large volumes of data and optimization of genetic comparison models and visualizations. JKU will be responsible for creating new models for comparative genomics, evolutionary distances between different organisms, and identification of correlations between genetic variation and phenotypic response of patients to particular treatments. The supercomputing infrastructure will be provided by the UMA and RISC. They will also develop applications to deliver, collect, and display test information. LRZ will focus on the provisioning of enhanced visualization and Virtual Reality hardware and software for the analysis of the interconnected huge genomic datasets in this project.
The final implementation into commercial software will be done by Integromics. “Integromics will contribute from a commercial perspective in the design of applications compatible with both computer and tablets-smartphones,” said Juan Elvira, CTO of Integromics. At the clinical level, Miguel Blanco, Chief of Allergy Carlos Haya Hospital, explained that the project will use data available in the National Allergy Network to validate the software solutions; e.g., for early detection of drug reactions and allergies. The project leader, Dr. Oswaldo Trelles, highlighted that one of the strengths of this study is its focus on medical practice. “The solutions we seek,” said Dr. Trelles “are targeted to a wide range of scientific applications, with personalized medicine certainly being one of them. Indeed, one of the objectives is to implement applications prototypes applied in real-use case scenarios and to evaluate their potential for detecting from genomic data of allergic patients the possible adverse reactions to treatment.”
The Mr. SymBioMath project represents an ideal opportunity for Integromics to reinforce its commitment to the development of software solutions for personalized medicine applied to the clinics. “This grant and collaboration with renowned computing experts will contribute to the democratization of genomics, in particular through the usage of mobile devices,” said Eduardo González Couto, CSO of Integromics.
Related Links:
Mr. SymBioMath Project
Integromics
The huge sets of data produced in genomics studies, typically with Next Generation Sequencing technology, are processed by high performance computers and office workstations, and more recently by mobile devices like tablets and smartphones. The sequence of only a single human genome, for example, requires about 3 gigabytes of storage. New methods are required to process these data quickly and efficiently and to better enable their subsequent application.
Integromics (Granada, Spain) has announced that it will invest in the optimization of computing performance for bioinformatics applications, with a special focus on clinical applications, by participating in a European project named “Mr. SymBioMath” that includes renowned high performance computing (HPC) experts. The project, funded with more than EUR 2.6 million by the Seventh Framework Program for R & D of the European Union and coordinated by the Laboratory of Bioinformatics and Information Technology of the University of Malaga-UMA (Spain), has been designed to provide solutions to these needs through synergy between Integromics (Spain), the Leibniz Supercomputing Centre in Munich-LRZ (Germany), the Johannes Kepler University of Linz-JKU (Austria), RISC Software (Austria), and Carlos Haya Hospital (Spain).
The Mr. SymBioMath project is to result in new software applications and data analysis methods to accelerate genomics adoption in the clinical domain. At the level of computation, the research will be focused on two major challenges: transmission of large volumes of data and optimization of genetic comparison models and visualizations. JKU will be responsible for creating new models for comparative genomics, evolutionary distances between different organisms, and identification of correlations between genetic variation and phenotypic response of patients to particular treatments. The supercomputing infrastructure will be provided by the UMA and RISC. They will also develop applications to deliver, collect, and display test information. LRZ will focus on the provisioning of enhanced visualization and Virtual Reality hardware and software for the analysis of the interconnected huge genomic datasets in this project.
The final implementation into commercial software will be done by Integromics. “Integromics will contribute from a commercial perspective in the design of applications compatible with both computer and tablets-smartphones,” said Juan Elvira, CTO of Integromics. At the clinical level, Miguel Blanco, Chief of Allergy Carlos Haya Hospital, explained that the project will use data available in the National Allergy Network to validate the software solutions; e.g., for early detection of drug reactions and allergies. The project leader, Dr. Oswaldo Trelles, highlighted that one of the strengths of this study is its focus on medical practice. “The solutions we seek,” said Dr. Trelles “are targeted to a wide range of scientific applications, with personalized medicine certainly being one of them. Indeed, one of the objectives is to implement applications prototypes applied in real-use case scenarios and to evaluate their potential for detecting from genomic data of allergic patients the possible adverse reactions to treatment.”
The Mr. SymBioMath project represents an ideal opportunity for Integromics to reinforce its commitment to the development of software solutions for personalized medicine applied to the clinics. “This grant and collaboration with renowned computing experts will contribute to the democratization of genomics, in particular through the usage of mobile devices,” said Eduardo González Couto, CSO of Integromics.
Related Links:
Mr. SymBioMath Project
Integromics
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







