Terahertz Pulses Simultaneously Kills Skin Tissue, Increases Tumor-Suppressing Proteins
|
By LabMedica International staff writers Posted on 01 Apr 2013 |
Terahertz (THz) radiation, a sliver of the electromagnetic spectrum that lies in the middle region between microwaves and infrared light, is providing significant benefits in medical diagnostics and scientific research.
As scientists and engineers find more real-world uses for this type of radiation, however, questions remain about its potential human health risks. New research performed on lab-grown human skin suggests that short but powerful bursts of THz radiation may both cause DNA damage and increase the production of proteins that help the body fight cancer. The findings, which are the result of a collaboration between physicists at the University of Alberta (Edmonton, Canada) and molecular biologists at the University of Lethbridge (Lethbridge, Canada) was published March 18, 2013, in the Optical Society’s (OSA) open-access journal Biomedical Optics Express.
“While these investigations of the biological effects of intense THz pulses are only just beginning,” said Dr. Lyubov Titova, with the University of Alberta and a member of the research team, “the fact that intense THz pulses can induce DNA damage but also DNA repair mechanisms in human skin tissue suggests that intense THz pulses need to be evaluated for possible therapeutic applications.”
THz photons, similar to their longer wavelength cousins in the microwave range, are not strong enough to disrupt the chemical ties that bind DNA together in the nucleus of cells. These waves, however, have just the right frequency to galvanize water molecules, causing them to vibrate and generate heat, which is why microwave ovens are so effective at cooking food. For this reason, it was believed that heat-related injuries were the primary risks posed by THz radiation exposure.
Recent theoretic studies, however, suggest that intense THz pulses of picosecond (one trillionth of a second) duration may directly affect DNA by amplifying natural vibrations (so-called “breathing” mode) of the hydrogen bonds that bind together the two strands of DNA. As a result, “bubbles” (openings in DNA strands) can form. According to the researchers, this brought up the question if intense THz pulses can destabilize DNA structure enough to cause DNA strand breaks.
As shown in earlier animal cell culture studies, THz exposure may indeed affect biologic function under specific conditions such as high power and extended exposure. There is, however, a huge gap between animal research and conclusions that can be drawn about human health.
In a first of its kind study, the Canadian researchers exposed laboratory-grown human skin tissue to intense pulses of THz electromagnetic radiation and have detected the telltale signs of DNA damage through a chemical marker known as phosphorylated H2AX. At the same time, they observed THz-pulse induced increases in the levels of multiple tumor-suppressor and cell-cycle regulatory proteins that facilitate DNA repair. This may suggest that DNA damage in human skin arising from intense picosecond THz pulse exposure could be quickly and effectively repaired, therefore lessening the risk of carcinogenesis.
The researchers used a skin tissue model made of healthy, human-derived epidermal and dermal cells. This tissue is able to undergo mitosis and is metabolically active, thus providing a suitable platform for assessing the effects of exposure to high intensity THz pulses on human skin. For their study, Dr. Titova and her colleagues exposed the skin tissue to picosecond bursts of THz radiation at levels far above what would typically be used in current real-world applications. They then examined the sample for the presence of phosphorylated H2AX, which “flags” the DNA double-strand break site and attracts cellular DNA repair machinery to it.
“The increase in the amount of phosphorylated H2AX in tissues exposed to intense THz pulses compared to unexposed controls indicated that DNA double strand breaks were indeed induced by intense THz pulses,” noted Dr. Titova. Once DNA breaks occur, they can ultimately lead to tumors if unrepaired. “This process,” she continued, “is very slow and cells have evolved many effective mechanisms to recognize damage, pause cell cycle to allow time for damage to be repaired, and—in case repair is unsuccessful—to prevent damage accumulation by inducing apoptosis, or programmed cell death of the affected cell.”
The researchers validated that these cellular repair mechanisms were taking place by detecting an elevated presence of multiple proteins that play vital roles in DNA repair, including protein p53 (frequently called “a guardian of the genome”); p21, which works to stop cell division to allow time for repair; protein Ku70, which helps reconnect the broken DNA strands; and several other important cell proteins with known tumor-suppressor roles. These observations indicate that exposure to intense THz pulses activates cellular processes that repair DNA damage. However, the researchers noted, it is too soon to make forecasts on the long-term implications of exposure.
“In our study we only looked at one moment in time—30 minutes after exposure,” Dr. Titova said. “In the future, we plan to study how all the observed effects change with time after exposure, which should allow us to establish how quickly any induced damage is repaired.”
The Canadian researchers hope to study the potential therapeutic effects of intense THz radiation exposure to see if directed treatment with intense THz pulses can become a new approach to combat cancer.
Related Links:
University of Alberta
University of Lethbridge
As scientists and engineers find more real-world uses for this type of radiation, however, questions remain about its potential human health risks. New research performed on lab-grown human skin suggests that short but powerful bursts of THz radiation may both cause DNA damage and increase the production of proteins that help the body fight cancer. The findings, which are the result of a collaboration between physicists at the University of Alberta (Edmonton, Canada) and molecular biologists at the University of Lethbridge (Lethbridge, Canada) was published March 18, 2013, in the Optical Society’s (OSA) open-access journal Biomedical Optics Express.
“While these investigations of the biological effects of intense THz pulses are only just beginning,” said Dr. Lyubov Titova, with the University of Alberta and a member of the research team, “the fact that intense THz pulses can induce DNA damage but also DNA repair mechanisms in human skin tissue suggests that intense THz pulses need to be evaluated for possible therapeutic applications.”
THz photons, similar to their longer wavelength cousins in the microwave range, are not strong enough to disrupt the chemical ties that bind DNA together in the nucleus of cells. These waves, however, have just the right frequency to galvanize water molecules, causing them to vibrate and generate heat, which is why microwave ovens are so effective at cooking food. For this reason, it was believed that heat-related injuries were the primary risks posed by THz radiation exposure.
Recent theoretic studies, however, suggest that intense THz pulses of picosecond (one trillionth of a second) duration may directly affect DNA by amplifying natural vibrations (so-called “breathing” mode) of the hydrogen bonds that bind together the two strands of DNA. As a result, “bubbles” (openings in DNA strands) can form. According to the researchers, this brought up the question if intense THz pulses can destabilize DNA structure enough to cause DNA strand breaks.
As shown in earlier animal cell culture studies, THz exposure may indeed affect biologic function under specific conditions such as high power and extended exposure. There is, however, a huge gap between animal research and conclusions that can be drawn about human health.
In a first of its kind study, the Canadian researchers exposed laboratory-grown human skin tissue to intense pulses of THz electromagnetic radiation and have detected the telltale signs of DNA damage through a chemical marker known as phosphorylated H2AX. At the same time, they observed THz-pulse induced increases in the levels of multiple tumor-suppressor and cell-cycle regulatory proteins that facilitate DNA repair. This may suggest that DNA damage in human skin arising from intense picosecond THz pulse exposure could be quickly and effectively repaired, therefore lessening the risk of carcinogenesis.
The researchers used a skin tissue model made of healthy, human-derived epidermal and dermal cells. This tissue is able to undergo mitosis and is metabolically active, thus providing a suitable platform for assessing the effects of exposure to high intensity THz pulses on human skin. For their study, Dr. Titova and her colleagues exposed the skin tissue to picosecond bursts of THz radiation at levels far above what would typically be used in current real-world applications. They then examined the sample for the presence of phosphorylated H2AX, which “flags” the DNA double-strand break site and attracts cellular DNA repair machinery to it.
“The increase in the amount of phosphorylated H2AX in tissues exposed to intense THz pulses compared to unexposed controls indicated that DNA double strand breaks were indeed induced by intense THz pulses,” noted Dr. Titova. Once DNA breaks occur, they can ultimately lead to tumors if unrepaired. “This process,” she continued, “is very slow and cells have evolved many effective mechanisms to recognize damage, pause cell cycle to allow time for damage to be repaired, and—in case repair is unsuccessful—to prevent damage accumulation by inducing apoptosis, or programmed cell death of the affected cell.”
The researchers validated that these cellular repair mechanisms were taking place by detecting an elevated presence of multiple proteins that play vital roles in DNA repair, including protein p53 (frequently called “a guardian of the genome”); p21, which works to stop cell division to allow time for repair; protein Ku70, which helps reconnect the broken DNA strands; and several other important cell proteins with known tumor-suppressor roles. These observations indicate that exposure to intense THz pulses activates cellular processes that repair DNA damage. However, the researchers noted, it is too soon to make forecasts on the long-term implications of exposure.
“In our study we only looked at one moment in time—30 minutes after exposure,” Dr. Titova said. “In the future, we plan to study how all the observed effects change with time after exposure, which should allow us to establish how quickly any induced damage is repaired.”
The Canadian researchers hope to study the potential therapeutic effects of intense THz radiation exposure to see if directed treatment with intense THz pulses can become a new approach to combat cancer.
Related Links:
University of Alberta
University of Lethbridge
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







