LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Increased Dietary Salt Causes Autoimmune Diseases by Stimulating Formation of Proinflammatory TH17 Cells

By LabMedica International staff writers
Posted on 19 Mar 2013
Three recent papers linked elevated dietary salt to the development of autoimmune diseases such as multiple sclerosis and type I diabetes by demonstrating the relationship between salt levels and the generation of T helper 17 (TH17) cells.

TH17 cells (interleukin-17 (IL-17)-producing helper T cells) are highly pro-inflammatory cells that are critical for clearing extracellular pathogens and for inducing multiple autoimmune diseases. To study the effect of salt concentration on TH17 cell metabolism investigators at Harvard Medical School (Boston, MA, USA) and Yale School of Medicine (New Haven, CT, USA) worked with cell cultures and with mouse populations where it was easy to adjust the level of dietary salt.

Details of the research and results were published in three papers that appeared in the March 6, 2013, online edition of the journal Nature. Among other factors, the investigators identified the protein serum glucocorticoid kinase 1 (SGK1), which is known to regulate salt levels in other types of cells, as a TH17-signal. The researchers found that mouse cells cultured in high-salt conditions had higher SGK1 expression and produced more TH17 cells than those grown in normal conditions. A modest increase in salt concentration induced SGK1 expression, promoted interleukin-23R expression, and enhanced TH17 cell differentiation in vitro and in vivo, accelerating the development of autoimmunity.

High-salt conditions activated the p38/MAPK pathway involving nuclear factor of activated T cells 5 (NFAT5; also called TONEBP) and SGK1 during cytokine-induced TH17 polarization. Gene silencing or chemical inhibition of p38/MAPK, NFAT5, or SGK1 abolished the high-salt-induced TH17 cell development. TH17 cells generated under high-salt conditions displayed a highly pathogenic and stable phenotype characterized by the upregulation of the proinflammatory cytokines.

"Humans were genetically selected for conditions in sub-Saharan Africa, where there was no salt," said senior author Dr. David Hafler, professor of neurology and immunobiology at Yale School of Medicine. "Today, Western diets all have high salt content and that has led to increase in hypertension and perhaps autoimmune disease as well. These are not diseases of bad genes alone or diseases caused by the environment, but diseases of a bad interaction between genes and the environment."

"Test-tube cell biology is performed based on the salt levels found in blood and not in the tissues where immune cells ultimately travel to fight infections," said Dr. Hafler. "That may have been a reason salt's role in autoimmunity has gone undetected. We may have been using the wrong concentrations of salt in our experiments for the past half-century. Nature did not want immune cells to become turned on in the pipeline, so perhaps blood salt levels are inhibitory."

Related Links:

Harvard Medical School
Yale School of Medicine


Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Clinical Chemistry System
P780
Pipette
Accumax Smart Series

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more