Discovery Confirms Universal Mechanism for Stimulating Antiaging Pathway
|
By LabMedica International staff writers Posted on 18 Mar 2013 |
A new study demonstrates what researchers consider decisive evidence that the red wine compound resveratrol directly activates a protein that promotes health and longevity in animal models.
Moreover, the researchers have discovered the molecular process for this interaction, revealing that a class of stronger drugs currently in clinical trials acts in a similar way. These findings not only answer questions about how resveratrol and related compounds work, but also will help scientists better engineer molecules that more precisely and effectively treat disease associated with aging.
The study was published in the March 8, 2013, issue of Science. The science of aging, for the past 10 years, has increasingly centered on sirtuins, a group of genes that are thought to protect many organisms, including mammals, against diseases of aging. Increasing evidence has demonstrated that resveratrol, a compound found in the skin of grapes as well as in peanuts and berries, increases the activity of a specific sirtuin, SIRT1, that protects the body from diseases by revving up the mitochondria.
Mice on resveratrol have twice the endurance and are relatively immune from effects of obesity and aging. In research attempts with nematodes, yeast, bees, flies and mice, lifespan has been extended. “In the history of pharmaceuticals, there has never been a drug that binds to a protein to make it run faster in the way that resveratrol activates SIRT1,” said Dr. David Sinclair, Harvard Medical School (HMS; Boston, MA, USA) professor of genetics and senior author on the paper. “Almost all drugs either slow or block them.”
In 2006, Dr. Sinclair’s group published a study showing that resveratrol could extend the lifespan of mice, and the company Sirtris Pharmaceuticals (Cambridge, MA, USA), which was started by HMS researchers, was founded to make drugs more potent than resveratrol.
Whereas ample studies, from Dr. Sinclair’s lab and elsewhere, highlighted a direct causal link between resveratrol and SIRT1, some scientists asserted that the studies were flawed. The contention lay in the way SIRT1 was examined in vitro, using a specific chemical group attached to the targets of SIRT1 that fluoresces more brightly as SIRT1 activity increases. This chemical group, however, is synthetic and does not exist in cells or in nature, and without it the experiments did not work. As a response to this, an article published in 2010 deduced that resveratrol’s activation of SIRT1 was an experimental artifact, one that existed in the lab, but not in an actual animal. SIRT1 activity in mice was, the article maintained, at most is an indirect result of resveratrol, and possibly even a pure coincidence.
As a result, controversy has exploded over the specific pathway that resveratrol and similar compounds affected. Does resveratrol directly activate SIRT1 or is the effect indirect? “We had six years of work telling us that this was most definitely not an artifact,” said Dr. Sinclair. “Still, we needed to figure out precisely how resveratrol works. The answer was extremely elegant.”
Dr. Sinclair and Basil Hubbard, then a doctoral student in the lab, teamed up with a group of researchers from both the US National Institutes of Health (Bethesda, MD, USA) and Sirtris Pharmaceuticals to address this question. First, the scientists addressed the difficulty of the fluorescent chemical group. Why was it required for resveratrol to rev up SIRT1 in the laboratory? Instead of rejecting the result as an artifact, the researchers theorized that the chemical might be mimicking molecules found naturally in the cell. These appeared to be a specific class of amino acid. In nature, there are three amino acids that resemble the fluorescent chemical group, one of which is tryptophan.
When researchers repeated the experiment, exchanging the fluorescing chemical group on the substrate with a tryptophan residue, resveratrol and similar molecules were once again able to activate SIRT1. “We discovered a signature for activation that is in fact found in the cell and doesn’t require these other synthetic groups,” said Dr. Hubbard, first author of the study. “This was a critical result, which allowed us to bridge the gap between our biochemical and physiological findings.”
“Next, we needed to identify precisely how resveratrol presses on SIRT1’s accelerator,” said Sinclair. The researchers tested approximately 2,000 mutants of the SIRT1 gene, eventually identifying one mutant that completely blocked resveratrol’s effect. The specific mutation resulted in the substitution of a single amino acid residue, out of the 747 that comprise SIRT1. The researchers also evaluated hundreds of other molecules from the Sirtris library, many of which are far more powerful than resveratrol, against this mutant SIRT1. All failed to activate it.
The authors propose a model for how resveratrol works: When the molecule binds, a hinge flips, and SIRT1 becomes hyperactive. Although these experiments occurred in a test tube, once the researchers identified the precise location of the accelerator pedal on SIRT1—and how to break it—they could test their ideas in a cell. They replaced the normal SIRT1 gene in muscle and skin cells with the accelerator-dead mutant. Now they could assess precisely whether resveratrol and the agents in development work by modifyingSIRT1 (in which case they would not work) or one of the thousands of other proteins in a cell (in which they would work). While resveratrol and the drugs tested revved up mitochondria in normal cells (an effect caused activating by SIRT1), the mutant cells were completely immune.
“This was the killer experiment,” concluded Dr. Sinclair. “There is no rational alternative explanation other than resveratrol directly activates SIRT1 in cells. Now that we know the exact location on SIRT1 where and how resveratrol works, we can engineer even better molecules that more precisely and effectively trigger the effects of resveratrol.”
The researchers plan on continuing academic-industry collaborations with the aim of bringing to market drugs that treat diseases associated with aging.
Related Links:
Harvard Medical School
Sirtris Pharmaceuticals
Moreover, the researchers have discovered the molecular process for this interaction, revealing that a class of stronger drugs currently in clinical trials acts in a similar way. These findings not only answer questions about how resveratrol and related compounds work, but also will help scientists better engineer molecules that more precisely and effectively treat disease associated with aging.
The study was published in the March 8, 2013, issue of Science. The science of aging, for the past 10 years, has increasingly centered on sirtuins, a group of genes that are thought to protect many organisms, including mammals, against diseases of aging. Increasing evidence has demonstrated that resveratrol, a compound found in the skin of grapes as well as in peanuts and berries, increases the activity of a specific sirtuin, SIRT1, that protects the body from diseases by revving up the mitochondria.
Mice on resveratrol have twice the endurance and are relatively immune from effects of obesity and aging. In research attempts with nematodes, yeast, bees, flies and mice, lifespan has been extended. “In the history of pharmaceuticals, there has never been a drug that binds to a protein to make it run faster in the way that resveratrol activates SIRT1,” said Dr. David Sinclair, Harvard Medical School (HMS; Boston, MA, USA) professor of genetics and senior author on the paper. “Almost all drugs either slow or block them.”
In 2006, Dr. Sinclair’s group published a study showing that resveratrol could extend the lifespan of mice, and the company Sirtris Pharmaceuticals (Cambridge, MA, USA), which was started by HMS researchers, was founded to make drugs more potent than resveratrol.
Whereas ample studies, from Dr. Sinclair’s lab and elsewhere, highlighted a direct causal link between resveratrol and SIRT1, some scientists asserted that the studies were flawed. The contention lay in the way SIRT1 was examined in vitro, using a specific chemical group attached to the targets of SIRT1 that fluoresces more brightly as SIRT1 activity increases. This chemical group, however, is synthetic and does not exist in cells or in nature, and without it the experiments did not work. As a response to this, an article published in 2010 deduced that resveratrol’s activation of SIRT1 was an experimental artifact, one that existed in the lab, but not in an actual animal. SIRT1 activity in mice was, the article maintained, at most is an indirect result of resveratrol, and possibly even a pure coincidence.
As a result, controversy has exploded over the specific pathway that resveratrol and similar compounds affected. Does resveratrol directly activate SIRT1 or is the effect indirect? “We had six years of work telling us that this was most definitely not an artifact,” said Dr. Sinclair. “Still, we needed to figure out precisely how resveratrol works. The answer was extremely elegant.”
Dr. Sinclair and Basil Hubbard, then a doctoral student in the lab, teamed up with a group of researchers from both the US National Institutes of Health (Bethesda, MD, USA) and Sirtris Pharmaceuticals to address this question. First, the scientists addressed the difficulty of the fluorescent chemical group. Why was it required for resveratrol to rev up SIRT1 in the laboratory? Instead of rejecting the result as an artifact, the researchers theorized that the chemical might be mimicking molecules found naturally in the cell. These appeared to be a specific class of amino acid. In nature, there are three amino acids that resemble the fluorescent chemical group, one of which is tryptophan.
When researchers repeated the experiment, exchanging the fluorescing chemical group on the substrate with a tryptophan residue, resveratrol and similar molecules were once again able to activate SIRT1. “We discovered a signature for activation that is in fact found in the cell and doesn’t require these other synthetic groups,” said Dr. Hubbard, first author of the study. “This was a critical result, which allowed us to bridge the gap between our biochemical and physiological findings.”
“Next, we needed to identify precisely how resveratrol presses on SIRT1’s accelerator,” said Sinclair. The researchers tested approximately 2,000 mutants of the SIRT1 gene, eventually identifying one mutant that completely blocked resveratrol’s effect. The specific mutation resulted in the substitution of a single amino acid residue, out of the 747 that comprise SIRT1. The researchers also evaluated hundreds of other molecules from the Sirtris library, many of which are far more powerful than resveratrol, against this mutant SIRT1. All failed to activate it.
The authors propose a model for how resveratrol works: When the molecule binds, a hinge flips, and SIRT1 becomes hyperactive. Although these experiments occurred in a test tube, once the researchers identified the precise location of the accelerator pedal on SIRT1—and how to break it—they could test their ideas in a cell. They replaced the normal SIRT1 gene in muscle and skin cells with the accelerator-dead mutant. Now they could assess precisely whether resveratrol and the agents in development work by modifyingSIRT1 (in which case they would not work) or one of the thousands of other proteins in a cell (in which they would work). While resveratrol and the drugs tested revved up mitochondria in normal cells (an effect caused activating by SIRT1), the mutant cells were completely immune.
“This was the killer experiment,” concluded Dr. Sinclair. “There is no rational alternative explanation other than resveratrol directly activates SIRT1 in cells. Now that we know the exact location on SIRT1 where and how resveratrol works, we can engineer even better molecules that more precisely and effectively trigger the effects of resveratrol.”
The researchers plan on continuing academic-industry collaborations with the aim of bringing to market drugs that treat diseases associated with aging.
Related Links:
Harvard Medical School
Sirtris Pharmaceuticals
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







