Common Cancer Vaccine Ingredient Diverts T cells from Tumors
|
By LabMedica International staff writers Posted on 18 Mar 2013 |
Scientists have recently discovered that a common vaccine ingredient diverts T cells from tumors.
Cancer vaccines that attempt to trigger an immune system assault are unsuccessful because the killer T cells aimed at tumors instead find the vaccination site a more inviting target, according to recent research. Scientists from the University of Texas MD Anderson Cancer Center (Houston, USA) reported their findings March 3, 2013, in the journal Nature Medicine.
A common substance used in many cancer vaccines to boost immune attack betrays the cause by facilitating an accumulation of T cells at the vaccination site, which then summon more T cells to help with the perceived threat. “Vaccines stimulate production of T cells primed to attack the target cancer, and there are many T cells in the bloodstream after vaccination. We found that only a few get to the tumor while many more are stuck at or double back to the vaccination site,” said senior author Willem Overwijk, PhD, in MD Anderson’s department of melanoma medical oncology.
The result of this process is mostly unscathed tumors while an overstimulated immune response can cause lesions at the injection site. The investigators found that a key perpetrator in this failure is incomplete Freund’s adjuvant (IFA), a mineral oil-based adjuvant included in many vaccines to trigger the immune response. “IFA sticks around the vaccination site for up to three months, along with the antigen designed to trigger immunity against the tumor,” Dr. Overwijk said. “T cells keep attacking and secreting chemokines to call for reinforcements. But it’s an unkillable target; T cells can’t kill mineral oil.”
Ultimately, the T cells die. “The vaccination site increasingly resembles a viral infection, with lots of damaged tissue and antigens,” Dr. Overwijk said. “Switching to a saline-based adjuvant in a melanoma vaccine reversed the T cell effect in mice. Major accumulations of T cells gathered in tumors, shrinking them, with minimal T cell activity at the vaccination site.”
Peptide antigens are available for almost all types of cancer, according to Dr. Overwijk. A saline adjuvant could alter the weak performance of cancer vaccines. A clinical trial of the model is expected to open later 2013 at the University of Virginia (Charlottesville, USA) and MD Anderson. Dr. Overwijk and colleagues noted 98 US- approved clinical trials of vaccines against a range of cancers have nearly all failed, while another 37 trials are open, enrolling patients. The US Food and Drug Administration (FDA) has approved only one therapeutic vaccine, for treatment of prostate cancer, out of all of those trials.
“Our group and many other researchers have been trying for years to improve the performance of cancer vaccines, to no avail,” Dr. Overwijk said. “People kept trying because of these beguiling T cell levels in the blood. But our data suggest that the very nature of IFA-based vaccines may make it almost impossible for them to work well.”
In past studies and clinical trials, tumors were seldom evaluated for evidence of T cell penetration. In humans, they are frequently inoperable, and there was no indication that it needed to be done. “But a few researchers did analyze human tumors for T cell infiltration and largely found what we found in our mouse experiments,” Dr. Overwijk said.
The scientists examined the fate of melanoma-specific CD8-positive T cells after vaccination with the gp100 peptide with and without IFA. Both vaccines increased levels of the desired T cells in the blood, but with IFA, the T cells decreased to nearly undetectable levels after three weeks and did not recover even with an engineered virus-based booster. The vaccine-lacking IFA produced similar peak amounts of the T cells, a response that persisted over time.
The researchers fluorescently tagged T cells in the mouse model to see where they went. The study’s findings revealed that mice without IFA had the bulk of T cells light up in their tumors with minimal presence at the vaccination site. Moreover, T cells generated at the injection site in mice that received IFA-based vaccine, with a tiny showing in the tumor. Response duration was tested in gp100/IFA and control IFA vaccines. The antigen/IFA combination gathered and persisted at the vaccination site, where it could still stimulate the proliferation of injected T cells 96 days after vaccination.
A separate set of research showed the antigen/IFA-driven T cells were forced to kill themselves at the vaccination site by a variety of cell suicide-inducing proteins. Dr. Overwijk and colleagues suggested that a possible answer to the problem was to decrease the size and persistence of vaccine “depots” at the injection site. They evaluated a vaccine based on a saline solution instead of IFA and found that antigens cleared more quickly but did not trigger the desired T cell response. A combination of three stimulatory molecules (covax) was added to the saline/peptide vaccine, producing a strong T cell response. IFA/peptide vaccine produced a strong T cell response but also stronger post-peak T cell suicide.
A comparison of saline/peptide/covax vs IFA/peptide/covax demonstrated that the saline version caused T cells to zoom in on the tumors and killed them, whereas the IFA version focused T cells at the vaccination site, killing normal tissue and inducing chemokines that damaged and killed T cells.
“IFA-based vaccination sites essentially outcompete tumor sites for T cell recognition and accumulation, chemokine production, and tissue damage,” Dr. Overwijk concluded. “It’s an engineering flaw in those vaccines that we didn’'t appreciate until now. Fortunately, our results also directly instruct us how to design new, more powerful vaccine formulas for treating people with cancer.”
Related Links:
University of Texas MD Anderson Cancer Center
Cancer vaccines that attempt to trigger an immune system assault are unsuccessful because the killer T cells aimed at tumors instead find the vaccination site a more inviting target, according to recent research. Scientists from the University of Texas MD Anderson Cancer Center (Houston, USA) reported their findings March 3, 2013, in the journal Nature Medicine.
A common substance used in many cancer vaccines to boost immune attack betrays the cause by facilitating an accumulation of T cells at the vaccination site, which then summon more T cells to help with the perceived threat. “Vaccines stimulate production of T cells primed to attack the target cancer, and there are many T cells in the bloodstream after vaccination. We found that only a few get to the tumor while many more are stuck at or double back to the vaccination site,” said senior author Willem Overwijk, PhD, in MD Anderson’s department of melanoma medical oncology.
The result of this process is mostly unscathed tumors while an overstimulated immune response can cause lesions at the injection site. The investigators found that a key perpetrator in this failure is incomplete Freund’s adjuvant (IFA), a mineral oil-based adjuvant included in many vaccines to trigger the immune response. “IFA sticks around the vaccination site for up to three months, along with the antigen designed to trigger immunity against the tumor,” Dr. Overwijk said. “T cells keep attacking and secreting chemokines to call for reinforcements. But it’s an unkillable target; T cells can’t kill mineral oil.”
Ultimately, the T cells die. “The vaccination site increasingly resembles a viral infection, with lots of damaged tissue and antigens,” Dr. Overwijk said. “Switching to a saline-based adjuvant in a melanoma vaccine reversed the T cell effect in mice. Major accumulations of T cells gathered in tumors, shrinking them, with minimal T cell activity at the vaccination site.”
Peptide antigens are available for almost all types of cancer, according to Dr. Overwijk. A saline adjuvant could alter the weak performance of cancer vaccines. A clinical trial of the model is expected to open later 2013 at the University of Virginia (Charlottesville, USA) and MD Anderson. Dr. Overwijk and colleagues noted 98 US- approved clinical trials of vaccines against a range of cancers have nearly all failed, while another 37 trials are open, enrolling patients. The US Food and Drug Administration (FDA) has approved only one therapeutic vaccine, for treatment of prostate cancer, out of all of those trials.
“Our group and many other researchers have been trying for years to improve the performance of cancer vaccines, to no avail,” Dr. Overwijk said. “People kept trying because of these beguiling T cell levels in the blood. But our data suggest that the very nature of IFA-based vaccines may make it almost impossible for them to work well.”
In past studies and clinical trials, tumors were seldom evaluated for evidence of T cell penetration. In humans, they are frequently inoperable, and there was no indication that it needed to be done. “But a few researchers did analyze human tumors for T cell infiltration and largely found what we found in our mouse experiments,” Dr. Overwijk said.
The scientists examined the fate of melanoma-specific CD8-positive T cells after vaccination with the gp100 peptide with and without IFA. Both vaccines increased levels of the desired T cells in the blood, but with IFA, the T cells decreased to nearly undetectable levels after three weeks and did not recover even with an engineered virus-based booster. The vaccine-lacking IFA produced similar peak amounts of the T cells, a response that persisted over time.
The researchers fluorescently tagged T cells in the mouse model to see where they went. The study’s findings revealed that mice without IFA had the bulk of T cells light up in their tumors with minimal presence at the vaccination site. Moreover, T cells generated at the injection site in mice that received IFA-based vaccine, with a tiny showing in the tumor. Response duration was tested in gp100/IFA and control IFA vaccines. The antigen/IFA combination gathered and persisted at the vaccination site, where it could still stimulate the proliferation of injected T cells 96 days after vaccination.
A separate set of research showed the antigen/IFA-driven T cells were forced to kill themselves at the vaccination site by a variety of cell suicide-inducing proteins. Dr. Overwijk and colleagues suggested that a possible answer to the problem was to decrease the size and persistence of vaccine “depots” at the injection site. They evaluated a vaccine based on a saline solution instead of IFA and found that antigens cleared more quickly but did not trigger the desired T cell response. A combination of three stimulatory molecules (covax) was added to the saline/peptide vaccine, producing a strong T cell response. IFA/peptide vaccine produced a strong T cell response but also stronger post-peak T cell suicide.
A comparison of saline/peptide/covax vs IFA/peptide/covax demonstrated that the saline version caused T cells to zoom in on the tumors and killed them, whereas the IFA version focused T cells at the vaccination site, killing normal tissue and inducing chemokines that damaged and killed T cells.
“IFA-based vaccination sites essentially outcompete tumor sites for T cell recognition and accumulation, chemokine production, and tissue damage,” Dr. Overwijk concluded. “It’s an engineering flaw in those vaccines that we didn’'t appreciate until now. Fortunately, our results also directly instruct us how to design new, more powerful vaccine formulas for treating people with cancer.”
Related Links:
University of Texas MD Anderson Cancer Center
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







