LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Antifreeze Proteins Block Growth of Ice Crystals by Binding Irreversibly

By LabMedica International staff writers
Posted on 28 Feb 2013
Antifreeze proteins (AFPs) bind irreversibly to ice crystals and prevent their growth even when no more protein is left in solution.

AFPs create a difference between the melting point and freezing point known as thermal hysteresis. The addition of AFPs at the interface between solid ice and liquid water inhibits the thermodynamically favored growth of the ice crystal, while ice growth is kinetically inhibited by the AFPs covering the water-accessible surfaces of the ice. Thermal hysteresis is easily measured in the lab with an instrument called a nanoliter osmometer.

Many organisms are protected from freezing by AFPs, which bind to ice, modify its morphology, and prevent its further growth. Since the initial discovery of AFPs in fish, they have also been found in insects, plants, bacteria, and fungi. These proteins have a wide range of applications in cryomedicine, cryopreservation, and frost protection for transgenic plants and vegetables. AFPs also serve as a model for understanding biomineralization, the processes by which proteins help form bones, teeth, and shells. Nonetheless, the mechanism of action of different types of antifreeze proteins is incompletely understood. Antifreeze proteins evolved independently many times with diverse structures and properties, even in closely related species. Although AFPs were discovered more than 30 years ago and have been studied extensively since then, it is not clear whether all AFPs block ice growth through a unified mechanism of action or if these diverse proteins have distinct binding properties. As measurements of the antifreeze proteins in contact with ice were elusive, this question had not been answered.

To elucidate some of these issues investigators at the Hebrew University of Jerusalem (Israel) and Ohio University (Athens, USA) prepared a fluorescently labeled version of the yellow mealworm (Tenebrio molitor) AFP. This protein is a hyperactive AFP with potency to arrest ice growth hundreds of times greater than that of fish or plant AFPs. Use of the labeled protein allowed for direct microscopic observation of protein-ice crystal interaction in a custom-designed, temperature-controlled microfluidic device.

Results published in the January 8, 2013, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) revealed that the binding of hyperactive Tenebrio molitor AFP to ice crystals was practically irreversible, and that surface-bound AFPs were sufficient to inhibit ice crystal growth even in solutions depleted of AFPs. These findings ruled out theories of AFP activity relying on the presence of unbound protein molecules.

Related Links:
Hebrew University of Jerusalem
Ohio University

Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic Hematology Analyzer
DH-800 Series
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more