New Agent Shows Potential in Battling Renal Cancer
|
By LabMedica International staff writers Posted on 27 Feb 2013 |

Image: The compound TIR-199 holds much promise in the laboratory in fighting renal cancer (Photo courtesy of the University of California, Riverside).
Chemists have developed a substance in the laboratory that has potential applications in fighting renal cancer.
The compound, called IR-199, targets the proteasome, a cellular complex in renal cancer cells, similar to the way the drug bortezomib, approved by the US Food and Drug Administration, targets and blocks the proteasome in multiple myeloma cells, a cancer that arises in bone marrow.
Dr. Michael Pirrung, a distinguished professor of chemistry at the University of California, Riverside (USA;), reported on the findings on the development of TIR-199 on February 19, 2013, at the 5th International Conference on Drug Discovery and Therapy, held in Dubai (UAE).
Functioning similar to a cellular garbage dump, the proteasome degrades proteins. Agents that suppress the action of proteasomes are called proteasome inhibitors, and have been shown to have activity against a range of cancer cell lines, although with varied results. Bortezomib, for instance, although effective against multiple myeloma, has numerous side effects because cells other than bone marrow cells are affected. “The novel feature of our new proteasome inhibitor, TIR-199, is that it is nearly as potent as bortezomib, but is selective in inhibiting the growth of only renal cancer cell lines,” Dr. Pirrung said. “It’s what makes TIR-199 attractive.”
The TIR-199 project at UC Riverside began approximately four years ago after a multidisciplinary, international group of scientists reported on a class of compounds that act on the proteasome. These compounds are the “syringolin” natural products—such as a compound generated naturally by the wheat-infecting bacterium Pseudomonas syringae. TIR-199 is a synthetic relative of syringolin. “At UCR we began to work on, and completed the synthesis of, two compounds from this class of compounds,” Dr. Pirrung said. “Of the two, TIR-199 showed most promise.”
Dr. Pirrung’s laboraroty first shipped TIR-199 samples to the University of Hawaii, Hilo, where Dr. André Bachmann, an associate professor of pharmaceutical sciences and Dr. Pirrung’s collaborator, researched TIR-199 in assays for how it worked against the proteasome. Dr. Bachmann then tested the compound against a limited number of cancer cell lines that demonstrated that TIR-199 was effective against the cancer cells. However, it still is not known, however, was if TIR-199 was toxic to normal cells.
Encouraged by these results, Dr. Pirrung submitted TIR-199 samples to the National Cancer Institute at the US National Institutes of Health (Bethesda, MD, USA), where the compound was subjected to a stringent 60-cell screening used typically to assess compounds for their effectiveness in fighting 60 types of cancer, including lung, leukemia, colon, brain, breast, ovarian, prostate, and renal cancers.
“We were very excited when the NCI informed us that TIR-199 has excellent potential to be moved to drug development because of its selective activity against renal cancer,” Dr. Pirrung said. “This is good news also because the NCI scientists told us there really are no good drugs out there to fight renal cancer.”
In the next phase, the NCI will evaluate TIR-199 on cells cultured in a hollow fiber that partially imitates the body by providing a three-dimensional (3D) setting. If the test findings are promising, TIR-199 will be assessed on lab mice.
The UCR Office of Technology Commercialization has filed a patent application on TIR-199 and is currently looking for collaborators in industry interested in developing the compound commercially. Several biotechnology companies have already shown interest. “We still have to fine-tune TIR-199 in the lab because some aspects--certain structural elements within it--make it easily metabolized,” Dr. Pirrung said. “But now that we have a good handle on how structural changes in the compound affect anticancer activity and how the parent drug binds to the proteasome, we are pretty confident of making a better version--the second generation--of TIR-199.”
Related Links:
University of California, Riverside
The compound, called IR-199, targets the proteasome, a cellular complex in renal cancer cells, similar to the way the drug bortezomib, approved by the US Food and Drug Administration, targets and blocks the proteasome in multiple myeloma cells, a cancer that arises in bone marrow.
Dr. Michael Pirrung, a distinguished professor of chemistry at the University of California, Riverside (USA;), reported on the findings on the development of TIR-199 on February 19, 2013, at the 5th International Conference on Drug Discovery and Therapy, held in Dubai (UAE).
Functioning similar to a cellular garbage dump, the proteasome degrades proteins. Agents that suppress the action of proteasomes are called proteasome inhibitors, and have been shown to have activity against a range of cancer cell lines, although with varied results. Bortezomib, for instance, although effective against multiple myeloma, has numerous side effects because cells other than bone marrow cells are affected. “The novel feature of our new proteasome inhibitor, TIR-199, is that it is nearly as potent as bortezomib, but is selective in inhibiting the growth of only renal cancer cell lines,” Dr. Pirrung said. “It’s what makes TIR-199 attractive.”
The TIR-199 project at UC Riverside began approximately four years ago after a multidisciplinary, international group of scientists reported on a class of compounds that act on the proteasome. These compounds are the “syringolin” natural products—such as a compound generated naturally by the wheat-infecting bacterium Pseudomonas syringae. TIR-199 is a synthetic relative of syringolin. “At UCR we began to work on, and completed the synthesis of, two compounds from this class of compounds,” Dr. Pirrung said. “Of the two, TIR-199 showed most promise.”
Dr. Pirrung’s laboraroty first shipped TIR-199 samples to the University of Hawaii, Hilo, where Dr. André Bachmann, an associate professor of pharmaceutical sciences and Dr. Pirrung’s collaborator, researched TIR-199 in assays for how it worked against the proteasome. Dr. Bachmann then tested the compound against a limited number of cancer cell lines that demonstrated that TIR-199 was effective against the cancer cells. However, it still is not known, however, was if TIR-199 was toxic to normal cells.
Encouraged by these results, Dr. Pirrung submitted TIR-199 samples to the National Cancer Institute at the US National Institutes of Health (Bethesda, MD, USA), where the compound was subjected to a stringent 60-cell screening used typically to assess compounds for their effectiveness in fighting 60 types of cancer, including lung, leukemia, colon, brain, breast, ovarian, prostate, and renal cancers.
“We were very excited when the NCI informed us that TIR-199 has excellent potential to be moved to drug development because of its selective activity against renal cancer,” Dr. Pirrung said. “This is good news also because the NCI scientists told us there really are no good drugs out there to fight renal cancer.”
In the next phase, the NCI will evaluate TIR-199 on cells cultured in a hollow fiber that partially imitates the body by providing a three-dimensional (3D) setting. If the test findings are promising, TIR-199 will be assessed on lab mice.
The UCR Office of Technology Commercialization has filed a patent application on TIR-199 and is currently looking for collaborators in industry interested in developing the compound commercially. Several biotechnology companies have already shown interest. “We still have to fine-tune TIR-199 in the lab because some aspects--certain structural elements within it--make it easily metabolized,” Dr. Pirrung said. “But now that we have a good handle on how structural changes in the compound affect anticancer activity and how the parent drug binds to the proteasome, we are pretty confident of making a better version--the second generation--of TIR-199.”
Related Links:
University of California, Riverside
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







