We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Cell and Tissue Acquisition Device Improves Efficiency at More Affordable Price

By LabMedica International staff writers
Posted on 26 Feb 2013
Print article
Image: Kuiqpick—the new cell and tissue acquisition system from NeuroInDx (Photo courtesy of NeuroInDx).
Image: Kuiqpick—the new cell and tissue acquisition system from NeuroInDx (Photo courtesy of NeuroInDx).
An innovative and affordable new cell and tissue acquisition instrument improves efficiency and ease-of-use compared to existing laser-assisted microdissection systems.

Kuiqpick, introduced by NeuroInDx, Inc. (Los Angeles, CA, USA), is the innovative new laser-assisted microdissection and acquisition system for research laboratories. It includes the additional the capacity to collect cells from tissues and cultures without affecting their viability, enabling the collected cells to then be cultured for further analysis and downstream applications. Also notable, Kuiqpick costs less than USD 30,000 per device, about one-fourth the cost of existing systems. “Kuiqpick [opens] the door for more labs to conduct the critical collection of live cells and tissue areas for examination and culturing,” said Stan Karsten, PhD, NeuroInDx chief scientific officer and cofounder; “For too long, the high cost of tissue microdissection and cell sorting technologies have limited cell-specific research. With the introduction of Kuiqpick, more labs and researchers can afford the technology.”

Rebecca Stockton, PhD, a University of California, Los Angeles (UCLA) assistant professor of pediatrics, uses Kuiqpick to study cerebral cavernous malformations and said, “[Kuiqpick is] perfect for collecting small abnormal blood vessels from the brain tissue and specific cells from cultures based on their form and structure, or their morphology, which is critical for my research.”

Originally conceived at UCLA and further developed by NeuroInDx, Kuiqpick can be attached to an inverted microscope to dissect brain tissue slices at the cellular resolution and collect individual cells from various cell cultures. A single press of a button initiates the collection of the brain tissue area or cells into a disposable capillary unit. Collected tissue samples are then transferred to a test tube for further use. “Kuiqpick is a novel and highly accurate system that has already proven to be extremely efficient in the isolation of specific cell populations from live and freshly frozen brain tissues,” said Dr. Lili C. Kudo, president and CEO of NeuroInDx; “It can be successfully used in a variety of molecular studies, including stem cell research, genomics and proteomics.”

NeuroInDx also offers to provide researchers with custom cell and tissue collection services and subsequent gene expression-microarray experiments, thus saving time and funding for their projects.

Related Links:

NeuroInDx




Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Nutating Mixer
Enduro MiniMix
New
Cytomegalovirus Test
NovaLisa Cytomegalovirus (CMV) IgG Test

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: Health Canada has approved SPINEstat, a first-in-class diagnostic blood test for axSpA, as a Class II medical device (Photo courtesy of Augurex)

First-in-Class Diagnostic Blood Test Detects Axial Spondyloarthritis

Axial spondyloarthritis (axSpA) is a chronic inflammatory autoimmune condition that typically affects individuals during their most productive years, with symptoms often emerging before the age of 45.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more