LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Magnetic Nanoparticles Underlie New Technique for 3D Culture of Lung Tissue

By LabMedica International staff writers
Posted on 11 Feb 2013
Image: Composite shows 3D cultures of four types of cells that Rice University scientists combined in vitro to create bronchiole lung tissue. The cells are: epithelial cells (EpiC), smooth muscle cells (SMC), pulmonary fibroblasts (HPF) and pulmonary endothelial cells (PEC) (Photo courtesy of Hubert Tseng/Rice University).
Image: Composite shows 3D cultures of four types of cells that Rice University scientists combined in vitro to create bronchiole lung tissue. The cells are: epithelial cells (EpiC), smooth muscle cells (SMC), pulmonary fibroblasts (HPF) and pulmonary endothelial cells (PEC) (Photo courtesy of Hubert Tseng/Rice University).
Image: Microscopic image shows the structure and layers of in vitro bronchiole tissue created at Rice University and Nano3D Biosciences. The cell layers include epithelial cells (EpiC), smooth muscle cells (SMC), pulmonary fibroblasts (PF) and pulmonary endothelial cells (PEC) (Photo courtesy of Hubert Tseng/Rice University).
Image: Microscopic image shows the structure and layers of in vitro bronchiole tissue created at Rice University and Nano3D Biosciences. The cell layers include epithelial cells (EpiC), smooth muscle cells (SMC), pulmonary fibroblasts (PF) and pulmonary endothelial cells (PEC) (Photo courtesy of Hubert Tseng/Rice University).
Image: Rice University spinoff Nano3D Biosciences uses magnetic levitation to grow three dimensional cell cultures. The technology uses inert, nontoxic nanoparticles and magnets to lift and suspend cells as they grow and divide (Photo courtesy of Nano3D Biosciences).
Image: Rice University spinoff Nano3D Biosciences uses magnetic levitation to grow three dimensional cell cultures. The technology uses inert, nontoxic nanoparticles and magnets to lift and suspend cells as they grow and divide (Photo courtesy of Nano3D Biosciences).
A novel three-dimensional (3D) culture system was used to grow lung cells in vitro to yield a structured tissue that closely mimicked the actual condition inside the human lung.

A longstanding goal in biomedical research has been to create methods for growing cell cultures in a fashion that faithfully represents native tissue environments. In particular, there is great interest in representative culture models of the lung, which is a particularly challenging tissue to recreate in vitro.

Investigators at Rice University (Houston, TX, USA) and at the biotech start-up company Nano3D Biosciences (Houston, TX, USA) developed a 3D growth chamber for lung tissue based on inert magnetic nanoparticles. Once the nanoparticles were ingested by cells, the cells could be manipulated with external magnets.

A report published in the January 10, 2013, online edition of the journal Tissue Engineering Part C: Methods described the use of "magnetic levitation" in conjunction with magnetic nanoparticles to create an organized 3D co-culture of the bronchiole that sequentially layered cells in a manner similar to native tissue architecture.

The 3D co-culture model was assembled from four human cell types in the bronchiole: endothelial cells, smooth muscle cells, fibroblasts, and epithelial cells. These cell layers were first cultured in 3D by magnetic levitation and then manipulated into contact with a custom-made magnetic pen, and again cultured for 48 hours. Hematoxylin and eosin staining of the resulting cell mass showed four distinct layers within the 3D co-culture. Immunohistochemistry confirmed the phenotype of each of the four cell types, and showed organized extracellular matrix formation, particularly with collagen type I.

Positive stains for CD31, von Willebrand factor, smooth muscle alpha-actin, vimentin, and fibronectin demonstrated the maintenance of phenotype for endothelial cells, smooth muscle cells, and fibroblasts. Positive stains for mucin-5AC, cytokeratin, and E-cadherin after seven days with and without 1% fetal bovine serum showed that epithelial cells maintained phenotype and function.

“One of the unique things about the magnetic levitation technology is that it allows us to move cells around and arrange them the way that we want for particular types of tissue,” said contributing author Dr. Tom Killian, professor of physics and astronomy at Rice University. “This is the first time anyone has arranged these four cell types in the same way that they are found in lung tissue.”

The magnetic levitation method of 3D culture of bronchiole tissue could solve a problem that is frequently encountered in testing the toxicity of airborne agents.

“With traditional two-dimensional cultures, it is very difficult to culture cells at the air-liquid interface, which is what you would prefer for toxicity testing,” said Dr. Glauco Souza, CSO of Nano3D Biosciences. “With our technology, we can easily levitate the bronchiole tissue to the air-liquid interface so that airborne toxins are exposed to the epithelial layer of the tissue, just as it would occur in the lungs.”

Related Links:
Rice University
Nano3D Biosciences

Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic Hematology Analyzer
DH-800 Series
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more