LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Fructose Effects on Brain Influence Overeating

By LabMedica International staff writers
Posted on 14 Jan 2013
A new study suggests that consuming fructose appears to cause changes in regional cerebral blood flow (CBF) that can lead to overeating.

Researchers at Yale University (New Haven, CT, USA) used arterial spin labeling magnetic resonance imaging (MRI) to quantify regional CBF in 20 healthy normal-weight adult volunteers, both before and after drinking a 75-gram beverage of pure glucose or fructose. The main outcome measures were relative changes in hypothalamic regional CBF after ingestion. Secondary outcomes included whole-brain analyses to explore regional CBF changes, functional connectivity analysis to investigate correlations between the hypothalamus and other brain region responses, and hormone responses to fructose and glucose ingestion.

The results showed that glucose ingestion increased functional connectivity between the hypothalamus and the thalamus and striatum, while fructose increased connectivity between the hypothalamus and thalamus, but not the striatum. Regional CBF within the hypothalamus, thalamus, insula, anterior cingulate, and striatum--the appetite and reward regions-- was reduced after glucose ingestion; in contrast, fructose reduced regional CBF in the thalamus, hippocampus, posterior cingulate cortex, fusiform, and visual cortex. Fructose ingestion was also associated with reduced systemic levels of the satiety-signaling hormone insulin. The study was published in the January 2, 2012, issue of the Journal of the American Medical Association (JAMA).

“Fructose ingestion produces smaller increases in circulating satiety hormones compared with glucose ingestion, and central administration of fructose provokes feeding in rodents, whereas centrally administered glucose promotes satiety,” concluded lead author Kathleen Page, MD, and colleagues. “Thus, fructose possibly increases food-seeking behavior and increases food intake.”

Fructose (fruit sugar) is a simple monosaccharide found in many plants and together with glucose forms sucrose, the sugar we eat. It is one of the three dietary monosaccharides, along with glucose and galactose, which are absorbed directly into the bloodstream during digestion. Because fructose is metabolized in the liver to glucose, it has the lowest glycemic index (19) of all the natural sugars. Excess fructose consumption has been hypothesized to be a cause of insulin resistance, obesity, elevated LDL cholesterol, and triglycerides, leading to metabolic syndrome.

Related Links:
Yale University


New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Rapid Molecular Testing Device
FlashDetect Flash10
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more