Blood Group O Found to Be Most Susceptible to Cholera
|
By LabMedica International staff writers Posted on 18 Sep 2012 |
The probability of becoming seriously ill from cholera depends on one’s blood group. Recent research showed that it is possible to find a new treatment for this troublesome illness by studying the molecular structure in the toxin in the cholera bacteria.
Three to five million people are infected by cholera yearly. The mortality rate is high: one hundred thousand people die from the infection every year. “Cholera depends on the blood group. Some blood groups have an increased risk of becoming seriously ill,” said Prof. Ute Krengel, from the department of chemistry at the University of Oslo (Norway).
When cholera bacteria multiply in the body, they create a poison called cholera toxin. The toxin must bind to the cell membrane before it can penetrate further into the intestinal cell and create mayhem. By studying the molecular structure of cholera toxins, researchers can discover how the toxins bind to intestinal cells at the level of the atom. Prof. Krengel’s goal was to find a new drug that prevents the cholera toxin from binding to the intestine and that ensures that the toxin is harmlessly dispersed from the body.
Cholera leads to violent diarrhea. The patient can lose up to 12 L of fluid every 24 hours. The treatment is a saline fluid replacement. “It must be administered as soon as possible and in large quantities. If the patient is unconscious already, the saline solution must be given intravenously. Antibiotics are of no use,” explained Prof. Gunnar Bjune, from the Institute of Health and Society at the University of Oslo.
The cholera bacterium is originally from Bangladesh, but in the past 200 hundred years, it has spread to much of the world and has established a firm foothold in many Asian and African countries. “Patients with blood group O are most at risk of becoming seriously ill. Those with blood groups A, B or AB are more protected against cholera,” said Prof. Krengel.
The Bangladeshi population is evenly distributed between blood groups O, A, and B. In Africa, most people have blood group O. Nearly everyone in the indigenous population in Latin America have group O. When cholera hits these areas, it hits especially hard. In collaboration with the Oslo University Hospital and the Biotechnology Centre, Prof. Krengel’s research group examined whether the probability of becoming seriously ill with cholera depends on blood groups. By studying the molecular structure in the toxin in the cholera bacterium, it is possible to find a new remedy for the dreaded illness, determine how strongly the cholera toxin binds, how long it takes to bind, and how long it stays bound to receptors on the intestinal cells.
The cholera toxin binds to small receptors on the intestinal wall. The receptors consist of small straws with attached sugar molecules. They are to protect the cells against harmful intruders. Unfortunately, the receptors can be exploited. “We want to develop new medicines that bind to the cholera toxin so that it cannot bind to the intestinal cells,” stated Prof. Krengel. The cholera toxin consists of two parts. The researchers study the lower part, which binds to the receptors. “We have discovered that the cholera toxin binds differently than previously thought,” she noted. The investigators will now examine how important the various amino acids are in the binding process and which amino acids bind the most. To penetrate into the intestinal cells, the cholera toxin must first get through mucous layer. “Our results suggest that the cholera toxin uses longer to penetrate the mucous layer if the patients have blood group antibodies in the mucous. Four out of five people have blood group antibodies in the mucous. Those with blood group O are the least protected and therefore get sicker than others.”
In its advanced research, the researcher have created a biologic model of how the cholera toxin enters intestinal cells. They do not use real cholera bacteria. Doing so would be too hazardous. Instead, they use Escherichia coli bacteria, which is the primary model bacterium for cell biologists. “They are easy to make and much quicker and safer to work with. We must grow large quantities in order to study the bindings,” said PhD candidate Julie Heggelund, whose background is in molecular biology.
To create synthetic cholera toxins-or to be precise: to create the lower part of the toxin--the scientists must manipulate the genes in E. coli bacteria. When Prof. Krengel had produced the lower part, she killed the bacteria in a pressure cooker. The receptors are synthetic sugar molecules. Microscopes are of no use in finding the structure of the cholera toxin and receptors: the resolution is not good enough. Researchers must rely on X-rays, which have such a short wavelength that most penetrate empty space in molecules. However, before they can get started with the X-ray machine, the researchers must crystallize the toxin and receptor molecules.
By interpreting the X-rays that are spread by the crystal, researchers can calculate what the structure of the atom looks like. This can be compared to sending laser light through a sieve. Studying the light that is spread by the mesh of the sieve allows researchers to calculate what the sieve looks like.
Each exposure is two-dimensional (2D). To create a three-dimensional image, researchers irradiate the toxin crystal up to 500 times from different angles. Although the imaging only takes a few days, the interpretation of the molecular structure can take several months.
Related Links:
University of Oslo
Three to five million people are infected by cholera yearly. The mortality rate is high: one hundred thousand people die from the infection every year. “Cholera depends on the blood group. Some blood groups have an increased risk of becoming seriously ill,” said Prof. Ute Krengel, from the department of chemistry at the University of Oslo (Norway).
When cholera bacteria multiply in the body, they create a poison called cholera toxin. The toxin must bind to the cell membrane before it can penetrate further into the intestinal cell and create mayhem. By studying the molecular structure of cholera toxins, researchers can discover how the toxins bind to intestinal cells at the level of the atom. Prof. Krengel’s goal was to find a new drug that prevents the cholera toxin from binding to the intestine and that ensures that the toxin is harmlessly dispersed from the body.
Cholera leads to violent diarrhea. The patient can lose up to 12 L of fluid every 24 hours. The treatment is a saline fluid replacement. “It must be administered as soon as possible and in large quantities. If the patient is unconscious already, the saline solution must be given intravenously. Antibiotics are of no use,” explained Prof. Gunnar Bjune, from the Institute of Health and Society at the University of Oslo.
The cholera bacterium is originally from Bangladesh, but in the past 200 hundred years, it has spread to much of the world and has established a firm foothold in many Asian and African countries. “Patients with blood group O are most at risk of becoming seriously ill. Those with blood groups A, B or AB are more protected against cholera,” said Prof. Krengel.
The Bangladeshi population is evenly distributed between blood groups O, A, and B. In Africa, most people have blood group O. Nearly everyone in the indigenous population in Latin America have group O. When cholera hits these areas, it hits especially hard. In collaboration with the Oslo University Hospital and the Biotechnology Centre, Prof. Krengel’s research group examined whether the probability of becoming seriously ill with cholera depends on blood groups. By studying the molecular structure in the toxin in the cholera bacterium, it is possible to find a new remedy for the dreaded illness, determine how strongly the cholera toxin binds, how long it takes to bind, and how long it stays bound to receptors on the intestinal cells.
The cholera toxin binds to small receptors on the intestinal wall. The receptors consist of small straws with attached sugar molecules. They are to protect the cells against harmful intruders. Unfortunately, the receptors can be exploited. “We want to develop new medicines that bind to the cholera toxin so that it cannot bind to the intestinal cells,” stated Prof. Krengel. The cholera toxin consists of two parts. The researchers study the lower part, which binds to the receptors. “We have discovered that the cholera toxin binds differently than previously thought,” she noted. The investigators will now examine how important the various amino acids are in the binding process and which amino acids bind the most. To penetrate into the intestinal cells, the cholera toxin must first get through mucous layer. “Our results suggest that the cholera toxin uses longer to penetrate the mucous layer if the patients have blood group antibodies in the mucous. Four out of five people have blood group antibodies in the mucous. Those with blood group O are the least protected and therefore get sicker than others.”
In its advanced research, the researcher have created a biologic model of how the cholera toxin enters intestinal cells. They do not use real cholera bacteria. Doing so would be too hazardous. Instead, they use Escherichia coli bacteria, which is the primary model bacterium for cell biologists. “They are easy to make and much quicker and safer to work with. We must grow large quantities in order to study the bindings,” said PhD candidate Julie Heggelund, whose background is in molecular biology.
To create synthetic cholera toxins-or to be precise: to create the lower part of the toxin--the scientists must manipulate the genes in E. coli bacteria. When Prof. Krengel had produced the lower part, she killed the bacteria in a pressure cooker. The receptors are synthetic sugar molecules. Microscopes are of no use in finding the structure of the cholera toxin and receptors: the resolution is not good enough. Researchers must rely on X-rays, which have such a short wavelength that most penetrate empty space in molecules. However, before they can get started with the X-ray machine, the researchers must crystallize the toxin and receptor molecules.
By interpreting the X-rays that are spread by the crystal, researchers can calculate what the structure of the atom looks like. This can be compared to sending laser light through a sieve. Studying the light that is spread by the mesh of the sieve allows researchers to calculate what the sieve looks like.
Each exposure is two-dimensional (2D). To create a three-dimensional image, researchers irradiate the toxin crystal up to 500 times from different angles. Although the imaging only takes a few days, the interpretation of the molecular structure can take several months.
Related Links:
University of Oslo
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







 Analyzer.jpg)