Bioengineered Jellyfish Provides Insights into Next-Generation Heart Disease Treatments
|
By LabMedica International staff writers Posted on 15 Aug 2012 |
Researchers have successfully tissue-engineered a jellyfish using a mix of silicone polymer and rat-heart cells. Scientists believe this discovery takes them a step closer to understanding how to reverse-engineer entire organs and finding novel treatments for patients with heart damage and failure.
The engineered, 1 cm-long jellyfish is comprised of a membrane with eight arm-like appendages. Within the membrane, rat heart-muscle cells were placed in a specific pattern to promote self-organization and accurately resemble the muscular architecture of a jellyfish. After placing the artificial jellyfish, named Medusoid, in a salty fluid capable of conducting electrical currents, researchers were able to trigger muscle contraction of the membrane by oscillating the voltage in the fluid. As a result of the muscular contractions, vortices (ring-shaped whirling masses of water) were created beneath the organism, allowing it to propel itself forward. This muscular-pump mechanism utilized by the jellyfish for locomotion is equivalent to that of the beating human heart.
Yearly, approximately one million people in the United States die of heart disease, accounting for 42% of the total number of deaths. The US cardiovascular devices market, a USD 15 billion industry forecasted to grow at a compound annual growth rate (CAGR) of 3.1%, represents 11% of the overall medical devices market. The market is driven by the aging population, the increased incidence rate of the disease and the scientific and technological advancements made in the field. These factors contribute to an unmet need in the market to find new and better treatments, according to healthcare market research company, GlobalData (London, UK).
The most common type of heart disease in the United States is coronary artery disease (CAD), characterized by an accumulation of plaque in the coronary arteries. Overtime, this leads to narrowing of the arteries and prevents adequate blood flow to the heart. The disorder can be diagnosed using tests such as an electrocardiogram (ECG), echocardiogram, cardiac catheterization, and coronary angiogram. Treatment for heart disease is tailored for each patient and can vary from drug therapy, monitoring and daily testing to surgical procedures and the implantation of biomedical devices such as stents and pacemakers to regulate cardiac activity.
These temporary treatment options consist of intervention via a substance or medical device. While biomedical devices and medical drugs are tested for safety and biocompatibility, long-term effects such as thrombosis and adverse reactions can occur. Moreover, biomedical devices that are implanted into the patient need to be replaced as they degrade overtime. Innovative solutions need to be designed to address these issues and improve the quality and delivery of healthcare. This study, conducted by investigators from Harvard University(Cambridge, MA, USA) and the California Institute of Technology (Caltech; Pasadena, CA, USA), presents a move in a different direction for scientists in the future to gather cells from one organism and redesign them to create tissue-engineered organs/systems such as heart pacemakers. The current US market for pacemakers is valued at USD 1.6 billion. A tissue-engineered and efficacious “biological heart pacemaker” that would be more biocompatible than a traditional pacemaker and would not require battery power could be beneficial, given the need to develop safe and effective treatments in this market, according to GlobalData.
While bioengineering organs and pacemakers are challenging from a development and regulatory standpoint, the immediate benefits include using the artificial jellyfish as a research model for preclinical testing of new medical heart disease drugs. Harvard’s Dr. Kevin Kit Parker said, “I could put your drug in the jellyfish and tell you if it’s going to work.”
The study findings also revealed that vortex formations generated by the engineered jellyfish are similar to the blood flow patterns entering the left ventricle of the heart. Studying the vortex patterns can provide more data about cardiac health and enable scientists to obtain a deeper understanding of the cardiovascular flow network and mechanisms.
Related Links:
Harvard University
California Institute of Technology
GlobalData
The engineered, 1 cm-long jellyfish is comprised of a membrane with eight arm-like appendages. Within the membrane, rat heart-muscle cells were placed in a specific pattern to promote self-organization and accurately resemble the muscular architecture of a jellyfish. After placing the artificial jellyfish, named Medusoid, in a salty fluid capable of conducting electrical currents, researchers were able to trigger muscle contraction of the membrane by oscillating the voltage in the fluid. As a result of the muscular contractions, vortices (ring-shaped whirling masses of water) were created beneath the organism, allowing it to propel itself forward. This muscular-pump mechanism utilized by the jellyfish for locomotion is equivalent to that of the beating human heart.
Yearly, approximately one million people in the United States die of heart disease, accounting for 42% of the total number of deaths. The US cardiovascular devices market, a USD 15 billion industry forecasted to grow at a compound annual growth rate (CAGR) of 3.1%, represents 11% of the overall medical devices market. The market is driven by the aging population, the increased incidence rate of the disease and the scientific and technological advancements made in the field. These factors contribute to an unmet need in the market to find new and better treatments, according to healthcare market research company, GlobalData (London, UK).
The most common type of heart disease in the United States is coronary artery disease (CAD), characterized by an accumulation of plaque in the coronary arteries. Overtime, this leads to narrowing of the arteries and prevents adequate blood flow to the heart. The disorder can be diagnosed using tests such as an electrocardiogram (ECG), echocardiogram, cardiac catheterization, and coronary angiogram. Treatment for heart disease is tailored for each patient and can vary from drug therapy, monitoring and daily testing to surgical procedures and the implantation of biomedical devices such as stents and pacemakers to regulate cardiac activity.
These temporary treatment options consist of intervention via a substance or medical device. While biomedical devices and medical drugs are tested for safety and biocompatibility, long-term effects such as thrombosis and adverse reactions can occur. Moreover, biomedical devices that are implanted into the patient need to be replaced as they degrade overtime. Innovative solutions need to be designed to address these issues and improve the quality and delivery of healthcare. This study, conducted by investigators from Harvard University(Cambridge, MA, USA) and the California Institute of Technology (Caltech; Pasadena, CA, USA), presents a move in a different direction for scientists in the future to gather cells from one organism and redesign them to create tissue-engineered organs/systems such as heart pacemakers. The current US market for pacemakers is valued at USD 1.6 billion. A tissue-engineered and efficacious “biological heart pacemaker” that would be more biocompatible than a traditional pacemaker and would not require battery power could be beneficial, given the need to develop safe and effective treatments in this market, according to GlobalData.
While bioengineering organs and pacemakers are challenging from a development and regulatory standpoint, the immediate benefits include using the artificial jellyfish as a research model for preclinical testing of new medical heart disease drugs. Harvard’s Dr. Kevin Kit Parker said, “I could put your drug in the jellyfish and tell you if it’s going to work.”
The study findings also revealed that vortex formations generated by the engineered jellyfish are similar to the blood flow patterns entering the left ventricle of the heart. Studying the vortex patterns can provide more data about cardiac health and enable scientists to obtain a deeper understanding of the cardiovascular flow network and mechanisms.
Related Links:
Harvard University
California Institute of Technology
GlobalData
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







