LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Pancreatic Cells Derived from Human Embryonic Stem Cells Cure Diabetes in Rodent Models

By LabMedica International staff writers
Posted on 12 Jul 2012
Commercially available human embryonic stem cells (hESCs) have been induced to differentiate into fully functional pancreatic beta cells that were capable of restoring insulin production and regularizing glucose metabolism in two different rodent diabetes models.

Investigators at the University of British Columbia (Vancouver, Canada) and their colleagues at the biotechnology firm BetaLogics (Raritan, NJ, USA) developed a protocol to differentiate commercially available human embryonic stem cells (hESCs) in vitro into a highly enriched PDX1+ pancreatic progenitor cell population. These cells progressed in vivo into mature pancreatic endocrine cells.

Immature pancreatic precursor cells were transplanted into immunodeficient mice with streptozotocin-induced diabetes. Glycemia was initially controlled with exogenous insulin; however, as insulin levels derived from the grafted stem cells increased over time, the mice were weaned from the insulin. Glucose metabolism was eventually regulated by meal and glucose challenges. Similar differentiation of pancreatic precursor cells was observed after transplant into immunodeficient rats.

Additional details published in the June 27, 2012, online edition of the journal Diabetes revealed that throughout the in vivo maturation period hESC-derived endocrine cells exhibited gene and protein expression profiles that were remarkably similar to that of cells in the developing human fetal pancreas.

"We are very excited by these findings, but additional research is needed before this approach can be tested clinically in humans," said senior author Dr. Timothy Kieffer, professor of cellular and physiological sciences at the University of British Columbia. "The studies were performed in diabetic mice that lacked a properly functioning immune system that would otherwise have rejected the cells. We now need to identify a suitable way of protecting the cells from immune attack so that the transplant can ultimately be performed in the absence of any immunosuppression."

Related Links:
University of British Columbia
BetaLogics

Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Alcohol Testing Device
Dräger Alcotest 7000

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more