LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Elevated WNT2 Expression Detected in Circulating Pancreatic Cancer Cells

By LabMedica International staff writers
Posted on 11 Jul 2012
Cancer researchers have detected abnormally high expression of the gene WNT2 (Wingless-type MMTV integration site family, member 2) in circulating metastatic pancreatic cancer cells from human patients and from mice genetically programmed to develop the disease.

WNT2 is a member of a gene family consisting of structurally related genes that encode secreted signaling proteins. These proteins have been implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during embryogenesis. Alternatively spliced transcript variants have been identified for this gene. The WNT pathway involves a large number of proteins that can regulate the production of WNT signaling molecules, their interactions with receptors on target cells and the physiological responses of target cells that result from the exposure of cells to the extracellular WNT ligands. Although the presence and strength of any given effect depends on the WNT ligand, cell type, and organism, some components of the signaling pathway are remarkably conserved in a wide variety of organisms.

Investigators at Harvard Medical School (Boston, MA; USA) developed a novel microfluidic device for efficient capture of circulating tumor cells (CTCs) from both human patients and from mice with genetically induced pancreatic cancer.

They analyzed and compared RNA expression levels in pancreatic CTCs, in primary tumor cells, and in normal pancreatic tissue. Results published in the July 1, 2012, online edition of the journal Nature revealed that WNT2 expression was significantly elevated in both CTCs and metastatic cells while WNT2-expressing cells were rare in primary tumors. Nonetheless, WNT2 expression in pancreatic tumors was higher than in normal pancreatic tissue.

Drugs known to block the activity of various members of the WNT pathway were tested to determine whether they had any effect on pancreatic tumor metastasis. Chemical inhibition of the enzyme TGF-beta activated kinase 1 (TAK1) prevented metastasis-associated activities in cultured CTCs. Blocking TAK1 expression by siRNA interference also reduced the development of metastasis in mice injected with WNT2-expressing CTCs.

“This proof of principle study is the first to show that, by studying both mouse and human pancreatic cancer cells captured with this device, we can dissect genes that are overexpressed in these cells and identify signaling pathways that allow them to survive in the bloodstream,” said senior author Dr. Daniel Haber, professor of oncology at Harvard Medical School. “We also found that targeting a key step in these pathways can reduce metastatic potential, which is critically important for control of pancreatic cancer. This study would not have been possible without a way to isolate rare CTCs from both mouse models and human patients.”

“The picture in more complicated in humans, since multiple WNTs are upregulated,” said Dr. Haber. “But the TAK1 inhibitor we tested appears to have an effect on diverse WNT pathways involved in the survival of pancreatic CTCs. We previously reported that TAK1 inhibition has promise for treating a genetically defined subset of colon cancers, and these findings now extend the relevance of the TAK1 pathway to suppression of blood-borne metastasis in pancreatic cancer. Considerable more work will be needed to fully understand the critical pathways involved, but it is our hope that TAK1 inhibitors will ultimately be developed for clinical testing.”

Related Links:
Harvard Medical School



Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Urine Chemistry Control
Dropper Urine Chemistry Control
Automated MALDI-TOF MS System
EXS 3000

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more