New Approach Triggers Genes That Inhibit Tumor Activity
|
By LabMedica International staff writers Posted on 06 Jun 2012 |

Image: Cancer cells – the focus of research team that has developed an innovative cancer-fighting strategy (Photo courtesy of Pennsylvania State University).
A team of scientists has developed a potential new application for “reactivating” genes that cause cancer tumors to shrink and die. The researchers hope that their discovery will aid in the development of an innovative anticancer drug that effectively targets unhealthy, cancerous tissue without damaging healthy, non-cancerous tissue and vital organs.
The research is planned for publication in the Journal of Biological Chemistry. The investigators, led by Dr. Yanming Wang, a Pennsylvania State University (Penn State; University Park, USA) associate professor of biochemistry and molecular biology, and Dr. Gong Chen, a Penn State assistant professor of chemistry, developed the new strategy after years of earlier research on a gene called PAD4 (peptidylarginine deiminase 4), which produces the PAD4 enzyme.
Earlier research by Dr. Wang and other scientists revealed that the PAD4 enzyme plays an important role in protecting the body from infection. The scientists compared normal mice with a functioning PAD4 gene to other mice that had a defective a PAD4 gene. When infected with bacteria, cells from the healthy mice attacked and killed approximately 30% of the harmful bacteria, while cells from the defective mice battled a mere 10%. The researchers discovered that cells with a functioning PAD4 enzyme are able to construct around themselves a protective, bacteria-killing grid that Dr. Wang and his colleagues called a NET (neutrophil extracellular trap). This NET is particularly effective at fighting off flesh-eating bacteria.
Now, in their new study, Dr. Wang and his collaborators have concentrated on the less-desirable effects of the same PAD4 gene. While PAD4 is clearly a critical part of the body’s defense strategy, the gene’s overexpression may be linked to autoimmune diseases such as rheumatoid arthritis and multiple sclerosis. One situation in which the PAD4 enzyme is markedly increased is in patients with certain cancers, such as breast, lung, and bone cancers. “We know that the PAD4 gene acts to silence tumor-suppressor genes,” said Dr. Wang. “So we theorized that by inhibiting the enzyme that this gene produces, the ‘good guys’--the tumor-suppressor genes -- would do a better job at destroying cancerous tissue and allowing the body to heal.”
To evaluate their hypothesis, Dr. Wang and his colleagues treated mice that had cancerous tumors with a molecule to suppress the PAD4 enzyme. They discovered that, particularly when combined with additional enzyme inhibitors, the treatment worked as effectively as the most typically used chemotherapy drug, doxorubicin, which shrinks tumors by approximately 70%.
Most amazing, however, was that the PAD4 enzyme-inhibition approach caused considerably less damage to healthy tissues. “Current chemotherapy drugs such as doxorubicin don’t attack just tumors; unfortunately, they also attack healthy areas of the body,” Dr. Wang explained. “That’s why chemotherapy patients experience such terrible side effects such as weight loss, nausea, and hair loss. Because the PAD4 treatment appears to be less toxic, it could be an excellent alternative to current chemotherapy treatments.”
Dr. Wang also explained that the PAD4 gene’s dual character--on the one hand, a helpful defense against bacteria, while on the other, a harmful silencer of cancer-suppressor genes--can be understood from the standpoints of evolution and longer life spans. “Our ancestors didn’t have antibiotics, so a bacterial infection could easily result in death, especially in young children. So, back then, an overactive PAD4 gene was advantageous because the NET bacteria-trapping mechanism was the body’s major defense against infection.”
Dr. Wang also explained that, conversely, because people now have access to antibiotics, they live much longer than our ancestors did. “PAD4’s bad effects--cancer and autoimmune diseases--tend to be illnesses that appear later in life,” Dr. Wang said. “So nowadays, an overactive PAD4 gene, while still protective against bacteria, can be detrimental later in life.”
Related Links:
Pennsylvania State University
The research is planned for publication in the Journal of Biological Chemistry. The investigators, led by Dr. Yanming Wang, a Pennsylvania State University (Penn State; University Park, USA) associate professor of biochemistry and molecular biology, and Dr. Gong Chen, a Penn State assistant professor of chemistry, developed the new strategy after years of earlier research on a gene called PAD4 (peptidylarginine deiminase 4), which produces the PAD4 enzyme.
Earlier research by Dr. Wang and other scientists revealed that the PAD4 enzyme plays an important role in protecting the body from infection. The scientists compared normal mice with a functioning PAD4 gene to other mice that had a defective a PAD4 gene. When infected with bacteria, cells from the healthy mice attacked and killed approximately 30% of the harmful bacteria, while cells from the defective mice battled a mere 10%. The researchers discovered that cells with a functioning PAD4 enzyme are able to construct around themselves a protective, bacteria-killing grid that Dr. Wang and his colleagues called a NET (neutrophil extracellular trap). This NET is particularly effective at fighting off flesh-eating bacteria.
Now, in their new study, Dr. Wang and his collaborators have concentrated on the less-desirable effects of the same PAD4 gene. While PAD4 is clearly a critical part of the body’s defense strategy, the gene’s overexpression may be linked to autoimmune diseases such as rheumatoid arthritis and multiple sclerosis. One situation in which the PAD4 enzyme is markedly increased is in patients with certain cancers, such as breast, lung, and bone cancers. “We know that the PAD4 gene acts to silence tumor-suppressor genes,” said Dr. Wang. “So we theorized that by inhibiting the enzyme that this gene produces, the ‘good guys’--the tumor-suppressor genes -- would do a better job at destroying cancerous tissue and allowing the body to heal.”
To evaluate their hypothesis, Dr. Wang and his colleagues treated mice that had cancerous tumors with a molecule to suppress the PAD4 enzyme. They discovered that, particularly when combined with additional enzyme inhibitors, the treatment worked as effectively as the most typically used chemotherapy drug, doxorubicin, which shrinks tumors by approximately 70%.
Most amazing, however, was that the PAD4 enzyme-inhibition approach caused considerably less damage to healthy tissues. “Current chemotherapy drugs such as doxorubicin don’t attack just tumors; unfortunately, they also attack healthy areas of the body,” Dr. Wang explained. “That’s why chemotherapy patients experience such terrible side effects such as weight loss, nausea, and hair loss. Because the PAD4 treatment appears to be less toxic, it could be an excellent alternative to current chemotherapy treatments.”
Dr. Wang also explained that the PAD4 gene’s dual character--on the one hand, a helpful defense against bacteria, while on the other, a harmful silencer of cancer-suppressor genes--can be understood from the standpoints of evolution and longer life spans. “Our ancestors didn’t have antibiotics, so a bacterial infection could easily result in death, especially in young children. So, back then, an overactive PAD4 gene was advantageous because the NET bacteria-trapping mechanism was the body’s major defense against infection.”
Dr. Wang also explained that, conversely, because people now have access to antibiotics, they live much longer than our ancestors did. “PAD4’s bad effects--cancer and autoimmune diseases--tend to be illnesses that appear later in life,” Dr. Wang said. “So nowadays, an overactive PAD4 gene, while still protective against bacteria, can be detrimental later in life.”
Related Links:
Pennsylvania State University
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







