LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

High-Throughput siRNA Screening Identifies Drug Targets in MYC-driven Cancers

By LabMedica International staff writers
Posted on 04 Jun 2012
Print article
A sophisticated high-throughput screening technique was used to search for genes able to block the activity of an oncogene that produces a protein that had traditionally been considered “undruggable” due to its lack of binding sites for low molecular weight inhibitors.

Investigators at the Fred Hutchinson Cancer Research Center (Seattle, WA, USA) focused their attention on the gene MYC, which is a strong protooncogene that it is very often found to be upregulated in many types of cancers. The Myc protein encoded by this gene is a transcription factor that activates expression of a great number of genes through binding on consensus sequences (Enhancer Box sequences (E-boxes)) and recruiting histone acetyltransferases (HATs). It can also act as a transcriptional repressor. By binding Miz-1 transcription factor and displacing the p300 coactivator, it inhibits expression of Miz-1 target genes. Myc is activated upon various mitogenic signals such as Wnt, Shh, and EGF (via the MAPK/ERK pathway). By modifying the expression of its target genes, MYC activation results in numerous biological effects. The protein encoded by MYC has been found to be highly resistant to chemotherapy mainly because it lacks efficient binding sites for drug compounds.

A paper published in the May 23, 2012, online edition of the journal Proceedings of the National Academy of Sciences of the USA described the use of high-throughput siRNA (small interfering RNA) screening to evaluate a library of 3.300 druggable genes for their possible effect on MYC. Of 49 genes selected for follow-up, 48 were confirmed by independent retesting, and approximately one-third selectively induced accumulation of cellular DNA damage. In addition, genes involved in histone acetylation and transcriptional elongation were identified, indicating that the screen had revealed known MYC-associated pathways.

For in vivo validation in a nude mouse xenograft model, the investigators selected the enzyme CSNK1e, a kinase whose expression correlated with MYC amplification in neuroblastoma (an established MYC-driven cancer). Using RNAi and available small-molecule inhibitors, they confirmed that inhibition of CSNK1e halted growth of MYC-amplified neuroblastoma xenografts.

An inhibitor for CSNK1e already exists: a compound that originally was developed to modulate sleep cycles. “It had been sitting on a shelf for years, like the thousands of other “orphan” drugs that are abandoned when they prove ineffective for their intended use,” said senior author Dr. Carla Grandori, professor of human biology at the Fred Hutchinson Cancer Research Center. “Fortunately, MYC-driven cancer cells have an Achilles heel. Their rapid growth and division damages their DNA, and they rely on other genes to repair that damage. Disabling those genes can cripple the cancer’s ability to grow.”

“It is possible that the next great breakthrough in cancer therapy is already out there, sitting on a shelf, hiding in plain view,” said Dr. Grandori. “We have barely scratched the surface. These techniques are incredibly powerful, but they are new and not widely known. There are thousands of researchers who could apply this approach to their work. In the right hands, it could speed up the development of new cancer therapies a thousand-fold.”

Related Links:

Fred Hutchinson Cancer Research Center



Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit
New
TORCH Infections Test
TORCH Panel

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.