First Gene Therapy Successful Against Degeneration Caused by the Aging Process
|
By LabMedica International staff writers Posted on 30 May 2012 |
A new study that involved inducing cells to express telomerase was shown to be successful. The research provides a proof-of-principle that this “feasible and safe” approach can effectively “improve [the] health span.”
A number of studies have shown that it is possible to lengthen the average life of individuals of many species, including mammals, by acting on specific genes. To date, however, this has meant altering the animals’ genes permanently from the embryonic stage--a strategy unfeasible in humans. Scientists from the Spanish National Cancer Research Center (CNIO; Madrid, Spain), led by its director Dr. María Blasco, have demonstrated that the mouse lifespan can be extended by the application in adult life of a single treatment acting directly on the animal’s genes. Moreover, they have done so using gene therapy, a strategy never before employed to combat aging. The therapy has been deemed to be safe and effective in mice.
The study’s findings were published May 15, 2012, in the journal EMBO Molecular Medicine. The CNIO team, in collaboration with Drs. Eduard Ayuso and Fátima Bosch of the Center of Animal Biotechnology and Gene Therapy at the Universitat Autònoma de Barcelona (UAB; Spain), treated adult (one-year-old) and aged (two-year-old) mice, with the gene therapy delivering a “rejuvenating” effect in both cases, according to the authors.
Mice treated at the age of one lived longer by 24% on average, and those treated at the age of two, by 13%. The therapy, furthermore, generated a substantial improvement in the mice’s health, delaying the onset of age-related diseases--such as osteoporosis and insulin resistance--and achieving improved readings on aging indicators like neuromuscular coordination.
The gene therapy consisted of treating the animals with a DNA--modified virus, the viral genes having been replaced by those of the telomerase enzyme, with a major role in aging. Telomerase repairs the extreme ends or tips of chromosomes, known as telomeres, and in doing so slows the cells growth and therefore the body’s biologic clock. When the animal is infected, the virus acts as a vehicle depositing the telomerase gene in the cells.
This study “shows that it is possible to develop a telomerase-based antiaging gene therapy without increasing the incidence of cancer,” the authors acknowledged. “Aged organisms accumulate damage in their DNA due to telomere shortening, [this study] finds that a gene therapy based on telomerase production can repair or delay this kind of damage,” they added.
But in most cells the telomerase gene is only active before birth; the cells of an adult organism, with few exceptions, have no telomerase. The exceptions in question are adult stem cells and cancer cells, which divide limitlessly and are therefore immortal--in fact several studies have shown that telomerase expression is the key to the immortality of tumor cells. It is exactly this risk of promoting tumor development that has pushed back the research of telomerase-based antiaging therapies. In 2007, Dr. Blasco’s team demonstrated that it was feasible to prolong the lives of transgenic mice, whose genome had been permanently altered at the embryonic stage, by causing their cells to express telomerase and extra copies of cancer resistant genes. These animals live 40% longer than is normal and do not develop cancer.
The mice subjected to the gene therapy now under assessment are similarly free of cancer. Researchers believe this is because the therapy begins when the animals are adult so do not have time to accumulate sufficient number of aberrant divisions for tumors to appear.
Also important is the kind of virus employed to carry the telomerase gene to the cells. The authors selected demonstrably safe viruses that have been effectively used in gene therapy treatment of hemophilia and eye disease. Specifically, they are nonreplicating viruses derived from others that are nonpathogenic in humans.
This study is viewed primarily as “a proof-of-principle that telomerase gene therapy is a feasible and generally safe approach to improve health span and treat disorders associated with short telomeres,” stated Virginia Boccardi, from the Second University of Naples (Italy) and Utz Herbig, from New Jersey Medical School-University Hospital Cancer Center (Newark, NJ, USA) in a commentary published in the same journal.
Although this therapy may not have use as an antiaging treatment in humans, in the short term, at least, could open up a new treatment option for ailments linked with the presence in tissue of abnormally short telomeres, as in some cases of human pulmonary fibrosis. As Dr. Blasco stated, “aging is not currently regarded as a disease, but researchers tend increasingly to view it as the common origin of conditions like insulin resistance or cardiovascular disease, whose incidence rises with age. In treating cell aging, we could prevent these diseases.”
With regard to the therapy under evaluation, Dr. Bosch explained, “Because the vector we use expresses the target gene (telomerase) over a long period, we were able to apply a single treatment. This might be the only practical solution for an antiaging therapy, since other strategies would require the drug to be administered over the patient’s lifetime, multiplying the risk of adverse effects.”
Related Links:
Spanish National Cancer Research Center
Universitat Autònoma de Barcelona
A number of studies have shown that it is possible to lengthen the average life of individuals of many species, including mammals, by acting on specific genes. To date, however, this has meant altering the animals’ genes permanently from the embryonic stage--a strategy unfeasible in humans. Scientists from the Spanish National Cancer Research Center (CNIO; Madrid, Spain), led by its director Dr. María Blasco, have demonstrated that the mouse lifespan can be extended by the application in adult life of a single treatment acting directly on the animal’s genes. Moreover, they have done so using gene therapy, a strategy never before employed to combat aging. The therapy has been deemed to be safe and effective in mice.
The study’s findings were published May 15, 2012, in the journal EMBO Molecular Medicine. The CNIO team, in collaboration with Drs. Eduard Ayuso and Fátima Bosch of the Center of Animal Biotechnology and Gene Therapy at the Universitat Autònoma de Barcelona (UAB; Spain), treated adult (one-year-old) and aged (two-year-old) mice, with the gene therapy delivering a “rejuvenating” effect in both cases, according to the authors.
Mice treated at the age of one lived longer by 24% on average, and those treated at the age of two, by 13%. The therapy, furthermore, generated a substantial improvement in the mice’s health, delaying the onset of age-related diseases--such as osteoporosis and insulin resistance--and achieving improved readings on aging indicators like neuromuscular coordination.
The gene therapy consisted of treating the animals with a DNA--modified virus, the viral genes having been replaced by those of the telomerase enzyme, with a major role in aging. Telomerase repairs the extreme ends or tips of chromosomes, known as telomeres, and in doing so slows the cells growth and therefore the body’s biologic clock. When the animal is infected, the virus acts as a vehicle depositing the telomerase gene in the cells.
This study “shows that it is possible to develop a telomerase-based antiaging gene therapy without increasing the incidence of cancer,” the authors acknowledged. “Aged organisms accumulate damage in their DNA due to telomere shortening, [this study] finds that a gene therapy based on telomerase production can repair or delay this kind of damage,” they added.
But in most cells the telomerase gene is only active before birth; the cells of an adult organism, with few exceptions, have no telomerase. The exceptions in question are adult stem cells and cancer cells, which divide limitlessly and are therefore immortal--in fact several studies have shown that telomerase expression is the key to the immortality of tumor cells. It is exactly this risk of promoting tumor development that has pushed back the research of telomerase-based antiaging therapies. In 2007, Dr. Blasco’s team demonstrated that it was feasible to prolong the lives of transgenic mice, whose genome had been permanently altered at the embryonic stage, by causing their cells to express telomerase and extra copies of cancer resistant genes. These animals live 40% longer than is normal and do not develop cancer.
The mice subjected to the gene therapy now under assessment are similarly free of cancer. Researchers believe this is because the therapy begins when the animals are adult so do not have time to accumulate sufficient number of aberrant divisions for tumors to appear.
Also important is the kind of virus employed to carry the telomerase gene to the cells. The authors selected demonstrably safe viruses that have been effectively used in gene therapy treatment of hemophilia and eye disease. Specifically, they are nonreplicating viruses derived from others that are nonpathogenic in humans.
This study is viewed primarily as “a proof-of-principle that telomerase gene therapy is a feasible and generally safe approach to improve health span and treat disorders associated with short telomeres,” stated Virginia Boccardi, from the Second University of Naples (Italy) and Utz Herbig, from New Jersey Medical School-University Hospital Cancer Center (Newark, NJ, USA) in a commentary published in the same journal.
Although this therapy may not have use as an antiaging treatment in humans, in the short term, at least, could open up a new treatment option for ailments linked with the presence in tissue of abnormally short telomeres, as in some cases of human pulmonary fibrosis. As Dr. Blasco stated, “aging is not currently regarded as a disease, but researchers tend increasingly to view it as the common origin of conditions like insulin resistance or cardiovascular disease, whose incidence rises with age. In treating cell aging, we could prevent these diseases.”
With regard to the therapy under evaluation, Dr. Bosch explained, “Because the vector we use expresses the target gene (telomerase) over a long period, we were able to apply a single treatment. This might be the only practical solution for an antiaging therapy, since other strategies would require the drug to be administered over the patient’s lifetime, multiplying the risk of adverse effects.”
Related Links:
Spanish National Cancer Research Center
Universitat Autònoma de Barcelona
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







