LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Gene “Toggle” Regenerates Injured Heart Cells

By LabMedica International staff writers
Posted on 08 May 2012
For the first time, researchers have transformed scar tissue that grows after a heart attack into regenerated heart muscle using microRNAs, according to new lab animal research. If validated in human studies, this finding could help prevent heart failure after a heart attack and applied to other types of tissue regeneration.

The study’s findings were reported online before print April 26, 2012, in Circulation Research, an American Heart Association journal. After a heart attack, heart muscle does not effortlessly regenerate and it accumulates scar tissue, comprised of cells called fibroblasts--increasing risk for heart failure.

“Researchers have tried various approaches, including the use of stem cells, to regenerate damaged heart muscle tissue,” said Victor J. Dzau, MD, the study’s senior author and a professor of medicine at Duke University Medical Center (Durham, NC, USA). “This is the first study to use microRNA, which are small molecules that control gene expression, to reprogram fibroblasts into heart muscle cells. We have not only shown evidence of this tissue regeneration in cell cultures, but also in mice.”

Using microRNA is simpler than many other tissue-regenerating approaches, according to Dr. Dzau, who is also chancellor for health affairs at Duke University. For example, stem cells are not easy to work with and have ethical issues surrounding their use, he noted. “This research represents a major advance in regenerative medicine overcoming the difficulties encountered with stem cells, and may be applied to other conditions of tissue damage such as stroke and spinal cord injury.”

Dr. Dzau’s team identified a combination of three microRNA types that convert fibroblasts to muscle cells. In the next phase of research, the researchers will assess whether microRNAs repair damaged hearts in larger animals and improve heart function. If those studies prove safe and effective, they will begin human studies. “If everything comes to fruition, I think we will see this as a therapy in the next decade,” Dr. Dzau said. “Conceivably, we’ll use it to regenerate hearts damaged by heart attacks, avoiding heart failure and saving lives.”

Related Links:

Duke University Medical Center



Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated MALDI-TOF MS System
EXS 3000
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more