Scientist Develop Completely Biologic, Live Woven Blood Vessels
|
By LabMedica International staff writers Posted on 03 May 2012 |
Ten years ago, two US researchers attempted to create a totally human-derived substitute to the synthetic blood vessels commonly used in dialysis patients. Since then, they have accomplished that and have developed a range of medical-textile-making techniques to weave together blood vessels.
“There were a lot of doubts in the field that you could make a blood vessel, which is something that needs to resist pressure constantly, 24-7, without any synthetic materials in it,” explained Dr. Nicolas L'Heureux, a co-founder and the chief scientific officer of Cytograft Tissue Engineering, Inc. (Novato, CA, USA). “They didn’t think that was possible at all.” But that was not the case. Cytograft, which Dr. L'Heureux and Todd McAllister co-founded in 2000, has indeed developed vessels that are “completely biological, completely human, and living, which is the Cadillac of treatments...and it seems to work really well,” Dr. L'Heureux stated.
The researchers first created blood vessels from patients’ own skin cells. Then, in June 2011, the company reported that three dialysis patients had received the world’s first lab-grown blood vessels made from skin cells from donors, which eliminates the long lead time needed for making vessels from a patient’s own cells. Moreover, now Cytograft has developed a new technique for making human textiles that promises to reduce the production cost of these vessels by half.
Dr. L'Heureux presented his team’s latest findings April 23, 2012, at the annual meeting of the American Association of Anatomists, which was held in conjunction with the Experimental Biology 2012 meeting in San Diego, CA, USA.
Cytograft’s new application builds on what already has been shown to be effective. In 2005, the scientists started extracting fibroblasts from patients’ own skin, cultured those cells into thin sheets, rolled up those sheets, cultured them some more so that they would fuse together, and implanted the lab-grown cylindrical vessels. The vessel-growing process was long, approximately seven months, but, because the vessels were derived from the patients’ own cells, the implants were easily accepted by the patients’ bodies, and they held up to the rigors of dialysis process, which requires repeated punctures with large-gauge needles.
Then the researchers created allogeneic vessels with the hope that they were laying the foundation for an off-the-shelf stockpile of 100% human replacement parts. “By combining these two methods we could make something that is allogeneic, cheaper to produce, and that you could store forever, meaning that the clinician can pull it off the shelves whenever they want,” Dr. L'Heureux explained. “If it is frozen and allogeneic, that is kind of the homerun.”
Those donor-based vessels were implanted into three patients in Poland, and they have performed well with no signs of rejection. That achievement was huge, from a manufacturing perspective, Dr. L'Heureux noted, because “it is very, very costly to segregate all the patients’ cells at all the steps with all the material and all the media and the culturing zones.”
Although using donor cells drastically decreases costs, putting the price tag of a lab-grown human vessel somewhere between USD 6,000 to USD 10,000 (although this will drop with automation and volume), it does not shorten the manufacturing time all that much, because the culturing of the cells so that they fuse together takes many months. Therefore, the researchers determined it was time to try out an idea they had been putting together for some years: human textiles.
Today, the Cytograft team is deconstructing the sheets of cultured cells into threads and then using a range of medical-textile-making techniques to weave together blood vessels. Most medical textiles used today are made of permanent synthetic fibers, such as polyester.
“They weave synthetic threads to create patches, for example, for blood vessels ... and they can make a large blood-vessel replacement conduit that they use for arterial repair. They can use patches for hernia repair,” Dr. L'Heureux explained. “What we are doing here is using a completely biological, completely human--and chemically nonprocessed in any way--fiber from which we can now build all kinds of structures by weaving, knitting, braiding, or a combination of techniques.”
According to Dr. L'Heureux, once the cell sheets are grown, the weaving of these human textiles into a vessel takes only a couple of days, even with the prototype loom currently in use at the Cytograft lab. Additionally, the threads of cells, while more delicate than synthetic fibers, are strong. “It is not like your grandmother with the little knitting pins,” Dr. L'Heureux stated. “It is much faster than that. Basically, the time it takes for making the threads and assembling them in a blood vessel is negligible compared to the time that it took you to make the sheet.”
Dr. L'Heureux noted that, having demonstrated that vessels grown from donor cells are a good, natural alternative to synthetic vessels, it’s time to roll out “a treatment that is more streamlined and more cost effective,” and this third-generation woven allogeneic blood vessel could be the solution. “We just came to a point where we had proved a lot of what we could do with our blood vessels and it made sense to find a way to make it faster. And this weaving method that makes the vessel out of the same material that we used in the sheet makes it ready in about a third of the time that it took before,” he said.
Moreover, weaving actually produces a more robust vessel than one that has been cultured in a cylindrical shape. “There is no seam, which is a problem when you roll something--there’s always a flap on the inside and a flap on the outside, and you need to be sure that these flaps are really well fused with the rest, and that takes a long time for the cells to do,” Dr. L'Heureux remarked. The research is still in the early stages, and an animal trial revealed promising findings. For one thing, the woven vessel has proved to resist puncture, “which is important for dialysis.”
From the beginning, Cytograft’s team has focused primarily on the lab-grown vessels’ use in dialysis patients, “because that’s where the largest need is,” Dr. L'Heureux said. But they could be used in a variety of patients. Babies with congenital heart defects, for instance, need replacement vessels that can grow and change. Heart bypass patients now endure the frequently painful recovery associated with removing a vessel from one part of the body for implantation elsewhere, and a lab-grown and -woven one could eliminate the need for the first surgery.
Furthermore, human-based replacement vessels are far less prone to infection than synthetic ones, Dr. L'Heureux emphasized. “With synthetics, one of the big drawbacks is that they get easily infected. What happens is that the synthetic harbors microbes, and immune cells can’t deal with the synthetic. They can’t grab it. It’s like chasing a dog on an ice rink.” Immune cells, meanwhile, can recognize and interact with the lab-grown tissue since it is completely biologic.
In spite of the uncertainties about Cytograft’s research in the early days, there is a move now for finding natural alternatives to synthetics, in part because of the infection risk, Dr. L'Heureux said. “Today, 15 years later, the goal of eliminating synthetic materials from tissue-engineered products has become pretty mainstream.”
Related Links:
Cytograft Tissue Engineering
“There were a lot of doubts in the field that you could make a blood vessel, which is something that needs to resist pressure constantly, 24-7, without any synthetic materials in it,” explained Dr. Nicolas L'Heureux, a co-founder and the chief scientific officer of Cytograft Tissue Engineering, Inc. (Novato, CA, USA). “They didn’t think that was possible at all.” But that was not the case. Cytograft, which Dr. L'Heureux and Todd McAllister co-founded in 2000, has indeed developed vessels that are “completely biological, completely human, and living, which is the Cadillac of treatments...and it seems to work really well,” Dr. L'Heureux stated.
The researchers first created blood vessels from patients’ own skin cells. Then, in June 2011, the company reported that three dialysis patients had received the world’s first lab-grown blood vessels made from skin cells from donors, which eliminates the long lead time needed for making vessels from a patient’s own cells. Moreover, now Cytograft has developed a new technique for making human textiles that promises to reduce the production cost of these vessels by half.
Dr. L'Heureux presented his team’s latest findings April 23, 2012, at the annual meeting of the American Association of Anatomists, which was held in conjunction with the Experimental Biology 2012 meeting in San Diego, CA, USA.
Cytograft’s new application builds on what already has been shown to be effective. In 2005, the scientists started extracting fibroblasts from patients’ own skin, cultured those cells into thin sheets, rolled up those sheets, cultured them some more so that they would fuse together, and implanted the lab-grown cylindrical vessels. The vessel-growing process was long, approximately seven months, but, because the vessels were derived from the patients’ own cells, the implants were easily accepted by the patients’ bodies, and they held up to the rigors of dialysis process, which requires repeated punctures with large-gauge needles.
Then the researchers created allogeneic vessels with the hope that they were laying the foundation for an off-the-shelf stockpile of 100% human replacement parts. “By combining these two methods we could make something that is allogeneic, cheaper to produce, and that you could store forever, meaning that the clinician can pull it off the shelves whenever they want,” Dr. L'Heureux explained. “If it is frozen and allogeneic, that is kind of the homerun.”
Those donor-based vessels were implanted into three patients in Poland, and they have performed well with no signs of rejection. That achievement was huge, from a manufacturing perspective, Dr. L'Heureux noted, because “it is very, very costly to segregate all the patients’ cells at all the steps with all the material and all the media and the culturing zones.”
Although using donor cells drastically decreases costs, putting the price tag of a lab-grown human vessel somewhere between USD 6,000 to USD 10,000 (although this will drop with automation and volume), it does not shorten the manufacturing time all that much, because the culturing of the cells so that they fuse together takes many months. Therefore, the researchers determined it was time to try out an idea they had been putting together for some years: human textiles.
Today, the Cytograft team is deconstructing the sheets of cultured cells into threads and then using a range of medical-textile-making techniques to weave together blood vessels. Most medical textiles used today are made of permanent synthetic fibers, such as polyester.
“They weave synthetic threads to create patches, for example, for blood vessels ... and they can make a large blood-vessel replacement conduit that they use for arterial repair. They can use patches for hernia repair,” Dr. L'Heureux explained. “What we are doing here is using a completely biological, completely human--and chemically nonprocessed in any way--fiber from which we can now build all kinds of structures by weaving, knitting, braiding, or a combination of techniques.”
According to Dr. L'Heureux, once the cell sheets are grown, the weaving of these human textiles into a vessel takes only a couple of days, even with the prototype loom currently in use at the Cytograft lab. Additionally, the threads of cells, while more delicate than synthetic fibers, are strong. “It is not like your grandmother with the little knitting pins,” Dr. L'Heureux stated. “It is much faster than that. Basically, the time it takes for making the threads and assembling them in a blood vessel is negligible compared to the time that it took you to make the sheet.”
Dr. L'Heureux noted that, having demonstrated that vessels grown from donor cells are a good, natural alternative to synthetic vessels, it’s time to roll out “a treatment that is more streamlined and more cost effective,” and this third-generation woven allogeneic blood vessel could be the solution. “We just came to a point where we had proved a lot of what we could do with our blood vessels and it made sense to find a way to make it faster. And this weaving method that makes the vessel out of the same material that we used in the sheet makes it ready in about a third of the time that it took before,” he said.
Moreover, weaving actually produces a more robust vessel than one that has been cultured in a cylindrical shape. “There is no seam, which is a problem when you roll something--there’s always a flap on the inside and a flap on the outside, and you need to be sure that these flaps are really well fused with the rest, and that takes a long time for the cells to do,” Dr. L'Heureux remarked. The research is still in the early stages, and an animal trial revealed promising findings. For one thing, the woven vessel has proved to resist puncture, “which is important for dialysis.”
From the beginning, Cytograft’s team has focused primarily on the lab-grown vessels’ use in dialysis patients, “because that’s where the largest need is,” Dr. L'Heureux said. But they could be used in a variety of patients. Babies with congenital heart defects, for instance, need replacement vessels that can grow and change. Heart bypass patients now endure the frequently painful recovery associated with removing a vessel from one part of the body for implantation elsewhere, and a lab-grown and -woven one could eliminate the need for the first surgery.
Furthermore, human-based replacement vessels are far less prone to infection than synthetic ones, Dr. L'Heureux emphasized. “With synthetics, one of the big drawbacks is that they get easily infected. What happens is that the synthetic harbors microbes, and immune cells can’t deal with the synthetic. They can’t grab it. It’s like chasing a dog on an ice rink.” Immune cells, meanwhile, can recognize and interact with the lab-grown tissue since it is completely biologic.
In spite of the uncertainties about Cytograft’s research in the early days, there is a move now for finding natural alternatives to synthetics, in part because of the infection risk, Dr. L'Heureux said. “Today, 15 years later, the goal of eliminating synthetic materials from tissue-engineered products has become pretty mainstream.”
Related Links:
Cytograft Tissue Engineering
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







