Heart Cells Created in the Lab Devised for Drug Testing, Disease Research
|
By LabMedica International staff writers Posted on 02 May 2012 |
Heart-like cells created in the lab from the skin of patients with a common cardiac disorder have been shown to contract less strongly than similarly created cells from unaffected family members. The cells also exhibit abnormal structure and respond only slightly to the wave of calcium signals that trigger each heartbeat.
Investigators used induced pluripotent stem (iPS) cell technology to create heart-muscle-like cells from the skin of patients with dilated cardiomyopathy, which is one of the leading causes of heart failure and heart transplantation in the United States. It adds to a growing body of evidence indicating that iPS cells can accurately reflect the disease status of the patients from whom they are derived.
Using the newly created diseased and normal cells, the researchers, the Stanford University School of Medicine (Stanford, CA, USA), were able to directly observe for the first time the effect of a common beta blocker drug, as well as validate the potential usefulness of a gene therapy approach currently in clinical trials.
“Primary human cardiac cells are difficult to obtain and don’t live long under laboratory conditions,” said Joseph Wu, MD, PhD, associate professor of cardiovascular medicine. Instead, researchers have relied on studies of cells from rat hearts, which beat much more rapidly, to determine more about human heart disease. “Now we’ve created heart cells from iPS cells derived from skin that allow us to study in detail the mechanisms of a common cardiac disease and how these cells respond to clinical interventions.”
Dr. Wu is the senior author of the research, which was published April 18, 2012, in the journal Science Translational Medicine. Postdoctoral scholar Ning Sun, MD, PhD, is the first author. The research is the latest in a type of research that is at times referred to as “disease-in-a-dish” studies. Employing iPS technology, other researchers have created stem cells from patients with disorders including Parkinson’s disease, amyotrophic lateral sclerosis, and Marfan syndrome.
The implications of such research are huge. According to Dr. Wu, one of the major reasons cardiac drugs are pulled from the market is unexpected cardiac toxicity--that is, they are damaging the very hearts they are meant to help. Presently, such drugs are prescreened for toxic effects on common laboratory cell lines derived from either hamster ovaries or human embryonic kidney cells. Even though these ovarian and kidney cells have been artificially induced to mimic the electrophysiology of human heart cells, they are still very different from the real thing. A reliable source of diseased and normal human heart cells on which to test the drugs’ effect prior to clinical use could improve drug screening, save billions of dollars and improve the lives of countless patients.
Dilated cardiomyopathy occurs when a part of the heart muscle enlarges and begins to lose the ability to pump blood efficiently.
Ultimately, the enlarged muscle starts to weaken and fail, requiring either medication or even transplant. Dilated cardiomyopathy, although in many instances, sporadically and without an obvious cause, can also be inherited from a range of genetic mutations.
The scientists performed skin biopsies on seven members of three generations of a family with the inherited form of the condition (called familial dilated cardiomyopathy). Four of the family members had inherited a specific genetic mutation--in a gene called TNNT2--that causes the disease; the other three had not.
The researchers used iPS technology to convert skin cells from the affected and unaffected family members into stem cells, which they then coaxed to become heart muscle cells for further study. They then compared cells from unaffected family members with those who had the disease.
“We didn’t know exactly how the mutation carried in this family would impact the contractility of the cells,” said Dr. Sun. “Other studies had indicated that this mutation decreased calcium sensitivity in rodent cells, but we had no direct biochemical data on human cells. We were able to show that the force of contraction was lower in cells from patients with the mutation. We also saw that, as predicted in the rodent model, they were less responsive to calcium signaling.” (In a healthy heart, quick, periodic upsurges in calcium levels inside heart cells trigger each contraction.)
Drs. Wu and Sun also established that the diseased cells exhibit structural differences and are more susceptible to mechanical stress than unaffected cells. When the researchers treated the diseased cells with metoprolol, a beta-blocker commonly used to treat cardiomyopathy, they found that it decreased the frequency of contractions as expected. It also increased the responsiveness of the cells to calcium, and over time, helped resolve some of the structural differences between affected and unaffected cells.
Finally, they demonstrated that adding a protein called Serca2a, which may inhibit the damaging effect of the mutated TNNT2 gene, considerably improved the contraction forcefulness of the diseased cells. Serca2a is currently in clinical trials as a possible gene therapy for dilated cardiomyopathy.
“Next, we’d like to continue looking at cells from patients with other mutations associated with this disorder,” said Dr. Wu. “How do they behave in culture? Do they respond in the same way? What is the mechanism for their response? What changes if we selectively introduce different mutations into these cells? And how do we scale up drug screening using cardiac specific iPS cell lines?”
Related Links:
Stanford University School of Medicine
Investigators used induced pluripotent stem (iPS) cell technology to create heart-muscle-like cells from the skin of patients with dilated cardiomyopathy, which is one of the leading causes of heart failure and heart transplantation in the United States. It adds to a growing body of evidence indicating that iPS cells can accurately reflect the disease status of the patients from whom they are derived.
Using the newly created diseased and normal cells, the researchers, the Stanford University School of Medicine (Stanford, CA, USA), were able to directly observe for the first time the effect of a common beta blocker drug, as well as validate the potential usefulness of a gene therapy approach currently in clinical trials.
“Primary human cardiac cells are difficult to obtain and don’t live long under laboratory conditions,” said Joseph Wu, MD, PhD, associate professor of cardiovascular medicine. Instead, researchers have relied on studies of cells from rat hearts, which beat much more rapidly, to determine more about human heart disease. “Now we’ve created heart cells from iPS cells derived from skin that allow us to study in detail the mechanisms of a common cardiac disease and how these cells respond to clinical interventions.”
Dr. Wu is the senior author of the research, which was published April 18, 2012, in the journal Science Translational Medicine. Postdoctoral scholar Ning Sun, MD, PhD, is the first author. The research is the latest in a type of research that is at times referred to as “disease-in-a-dish” studies. Employing iPS technology, other researchers have created stem cells from patients with disorders including Parkinson’s disease, amyotrophic lateral sclerosis, and Marfan syndrome.
The implications of such research are huge. According to Dr. Wu, one of the major reasons cardiac drugs are pulled from the market is unexpected cardiac toxicity--that is, they are damaging the very hearts they are meant to help. Presently, such drugs are prescreened for toxic effects on common laboratory cell lines derived from either hamster ovaries or human embryonic kidney cells. Even though these ovarian and kidney cells have been artificially induced to mimic the electrophysiology of human heart cells, they are still very different from the real thing. A reliable source of diseased and normal human heart cells on which to test the drugs’ effect prior to clinical use could improve drug screening, save billions of dollars and improve the lives of countless patients.
Dilated cardiomyopathy occurs when a part of the heart muscle enlarges and begins to lose the ability to pump blood efficiently.
Ultimately, the enlarged muscle starts to weaken and fail, requiring either medication or even transplant. Dilated cardiomyopathy, although in many instances, sporadically and without an obvious cause, can also be inherited from a range of genetic mutations.
The scientists performed skin biopsies on seven members of three generations of a family with the inherited form of the condition (called familial dilated cardiomyopathy). Four of the family members had inherited a specific genetic mutation--in a gene called TNNT2--that causes the disease; the other three had not.
The researchers used iPS technology to convert skin cells from the affected and unaffected family members into stem cells, which they then coaxed to become heart muscle cells for further study. They then compared cells from unaffected family members with those who had the disease.
“We didn’t know exactly how the mutation carried in this family would impact the contractility of the cells,” said Dr. Sun. “Other studies had indicated that this mutation decreased calcium sensitivity in rodent cells, but we had no direct biochemical data on human cells. We were able to show that the force of contraction was lower in cells from patients with the mutation. We also saw that, as predicted in the rodent model, they were less responsive to calcium signaling.” (In a healthy heart, quick, periodic upsurges in calcium levels inside heart cells trigger each contraction.)
Drs. Wu and Sun also established that the diseased cells exhibit structural differences and are more susceptible to mechanical stress than unaffected cells. When the researchers treated the diseased cells with metoprolol, a beta-blocker commonly used to treat cardiomyopathy, they found that it decreased the frequency of contractions as expected. It also increased the responsiveness of the cells to calcium, and over time, helped resolve some of the structural differences between affected and unaffected cells.
Finally, they demonstrated that adding a protein called Serca2a, which may inhibit the damaging effect of the mutated TNNT2 gene, considerably improved the contraction forcefulness of the diseased cells. Serca2a is currently in clinical trials as a possible gene therapy for dilated cardiomyopathy.
“Next, we’d like to continue looking at cells from patients with other mutations associated with this disorder,” said Dr. Wu. “How do they behave in culture? Do they respond in the same way? What is the mechanism for their response? What changes if we selectively introduce different mutations into these cells? And how do we scale up drug screening using cardiac specific iPS cell lines?”
Related Links:
Stanford University School of Medicine
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







