LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Fluorescent Protein Improves Sensitivity of Cellular Imaging

By LabMedica International staff writers
Posted on 26 Mar 2012
Image: A tiny crystal of mTurquoise2 viewed with a microscope. mTurquoise2 crystals were used to study the atomic scale interactions that result in its high fluorescence efficiency. (Photo courtesy of CNRS-ESRF/von Stetten/Royant).
Image: A tiny crystal of mTurquoise2 viewed with a microscope. mTurquoise2 crystals were used to study the atomic scale interactions that result in its high fluorescence efficiency. (Photo courtesy of CNRS-ESRF/von Stetten/Royant).
The sensitivity of high-resolution live cell imaging has now been much improved by mTurquoise2, a newly designed variant protein that emits turquoise light more efficiently than the popular, but only modestly bright, Enhanced Cyan Fluorescent Protein (ECFP).

Cyan Fluorescent Proteins (CFPs) have long suffered from a weak fluorescence level, generally converting merely 36% of the incoming blue into cyan light. In a study published on March 20, 2012, in the journal Nature Communications, scientists developed and applied a highly specialized strategy involving rationalized, stepwise improvements on ECFP, itself an improved, cyan color variant of Green Fluorescent Protein originally cloned from Aequorea victoria.

As the first step toward achieving the higher brightness and with it improved sensitivity for fluorescent imaging, highly brilliant X-ray beams were used to uncovered subtle details of how CFPs store incoming energy and retransmit it as fluorescent light: they produced tiny crystals of many different improved CFPs and resolved their molecular structures. These structures revealed a subtle process near the so-called chromophore, the light-emitting complex inside the CFPs, whose fluorescence efficiency could be modulated by the environment.

“We could understand the function of individual atoms within CFPs and pinpoint the part of the molecule that needed to be modified to increase the fluorescence yield,” says David von Stetten from the team at the European Synchrotron Radiation Facility (ESRF) (Grenoble, France).

In parallel to this work, the team at the van Leeuwenhoek Center for Advanced Microscopy, University of Amsterdam (The Netherlands) used an innovative screening technique to study hundreds of modified CFP molecules, measuring their fluorescence lifetimes under the microscope to identify which had improved properties.

The result of this rational design is the new CFP named mTurquoise2. By combining structural and cellular biology efforts, the researchers showed that mTurquoise2 has a fluorescence efficiency of 93%, unmatched for monomeric fluorescent proteins. The properties of mTurquoise2 makes it the preferable cyan variant of green fluorescent protein for long-term imaging and as donor for Förster resonance energy transfer to a yellow fluorescent protein.

Related Links:
European Synchrotron Radiation Facility (ESRF)
University of Amsterdam
University Joseph-Fourier


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
8-Channel Pipette
SAPPHIRE 20–300 µL

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more